SEBASTIAN JAROSZ GEOSERWIS UL. OBOZOWA 57/13 30-383 KRAKÓW TEL. 503 743 403 NIP 6281705326

SPRAWOZDANIE Z DODATKOWYCH BADAŃ GEOTECHNICZNYCH

PRZEPROWADZONYCH NA TERENIE BUDOWY LINII KOLEJOWEJ E65 NA ODC. ZABRZEG – ZEBRZYDOWICE (GRANICA PAŃSTWA), W KM 55+080 – 55+560

Opracował:

mgr inż. Sebastian Jarosz nr uprawnień geologicznych VII-1370

.....

mgr inż. Agnieszka Jarosz

KRAKÓW, grudzień 2024

Sprawozdanie z dodatkowych badań geotechnicznych przeprowadzonych na terenie budowy linii kolejowej E65 na odc. Zabrzeg – Zebrzydowice (granica Państwa), w km 55+080 – 55+560

SPIS TREŚCI:

1.	WSTEP	. 2
2.	METODYKA I ZAKRES WYKONANYCH PRAC	.2
3.	UWARUNKOWANIA GEOLOGICZNE	.5
4.	WYNIKI BADAŃ	.6
5.	PODSUMOWANIE	. 8

SPIS ZAŁĄCZNIKÓW:

Załącznik 1.1-1.2	Mapa sytuacyjno-wysokościowa z lokalizacją wykonanych prac terenowych
Załącznik 2.1-2.3	Karty dokumentacyjne otworów badawczych
Załącznik 3.1-3.3	Wyniki sondowania statycznego CPTU
Załącznik 4	Badania dylatometrem płaskim Marchettiego
Załącznik 5	Sprawozdanie z badań laboratoryjnych

1. WSTĘP

Na zamówienie Pomorskie Przedsiębiorstwo Mechaniczno-Torowe sp. z o.o. z siedzibą w Gdańsku przy ul. Sandomierskiej 18 przeprowadzono dodatkowe badania geotechniczne na terenie budowy linii kolejowej E 65 na odcinku Zabrzeg – Zebrzydowice (granica państwa), w km 55+080 – 55+560, w osi rozebranego toru nr 3.

Prace terenowe przeprowadzono we wrześniu 2024 r.

2. METODYKA I ZAKRES WYKONANYCH PRAC

W ramach badań geotechnicznych wykonano 3 węzły badawcze (55+080, 55+380 i 55+560), na które składały się otwory badawcze z poborem odpowiednich prób gruntu, sondowania sondą statyczną CPTU oraz badania dylatometrem płaskim Marchettiego. Na pobranych próbach gruntu przeprowadzono badania laboratoryjne cech wytrzymałościowych i odkształceniowych.

Szczegółowy zakres prac ustalono z Zamawiającym. Prace badawcze prowadzono w trudnych warunkach terenowych, w wykopie wąskoprzestrzennym o głębokości około 1,2 m.

Roboty wiertnicze

Wykonano 3 otwory badawcze do głębokości 9,0 – 10,5 m ppt o łącznym metrażu 30,0 mb. Do wykonywania wierceń wykorzystywano urządzenie wiertnicze zamontowane na podwoziu gąsienicowym – WH0250SG, z zastosowaniem świdrów spiralnych o średnicy 110 mm i częściowym zarurowaniem. Z interwałów uzgodnionych z Zamawiającym pobrano próby gruntu o strukturze nienaruszonej – klasy 1, metodą A (próbnik Shelby).

Profile otworów badawczych przedstawiono w kartach dokumentacyjnych (zał. 2.1 – 2.3).

Sondowania sondą statyczną CPTU

Wykonano 3 sondowania sondą statyczną CPTU do głębokości 9,7 – 9,8 m ppt. Łączny metraż sondowań wyniósł 29,2 mb.

Sondowania statyczne CPTU wykonano sondą Pagani o parametrach: powierzchnia podstawy - 10 cm², powierzchnia tulei ciernej - 150 cm², kąt wierzchołkowy stożka – 60°.

Sprawozdanie z dodatkowych badań geotechnicznych przeprowadzonych na terenie budowy linii kolejowej E65 na odc. Zabrzeg – Zebrzydowice (granica Państwa), w km 55+080 – 55+560

Sonda wciskana jest w podłoże ze stałą prędkością, wynoszącą 2 cm/s. Badanie polega na wciskaniu sondy stożkowej pionowo w grunt, za pośrednictwem kolumny żerdzi. W trakcie pogrążania stożkowej końcówki sondy rejestrowane są wartości następujących parametrów: oporu stożka (qc), tarcia na tulei ciernej (fs) oraz ciśnienia porowego (u2). Zastosowanie elektrycznego piezostożka (CPTU) umożliwia ciągłą rejestrację danych (co 1 cm). Charakterystyka penetracji stożka uzupełniona jest krzywą zmian współczynnika tarcia (Rf), opisującego stosunek oporu na tulei ciernej do oporu na stożku – fs/qc, wyrażony w procentach.

Testy wykonano zgodnie ze standardami międzynarodowymi (Swedish Standard, Dutch Standard, ISSMFE) oraz wymogami normy PN/B-04452:2002. Geotechnika. Badania polowe.

Otrzymane bezpośrednio z badań wykresy parametrów sondowań zostały poddane wstępnej weryfikacji, polegającej na identyfikacji stref nagłych przyrostów oporu sondowania, które mogą mieć związek z pokonywaniem przez sondę lokalnych przeszkód oraz na wyodrębnieniu interwałów o podobnych, możliwych do uśrednienia wartościach parametrów sondowań – grupowanie danych do wydzielenia jednorodnych geotechnicznie warstw gruntu.

Interpretację wyników sondowań wykonano przy użyciu oprogramowania: CPT-Star 2.0.

• <u>Klasyfikacja sondowanych gruntów</u>

Warstwom wydzielonym na podstawie analizy zmienności parametrów sondowania wstępnie przydzielono rodzaj gruntu, zgodnie z klasyfikacją Robertsona (1990). Ostatecznie litologia została skorygowana na podstawie wyników wierceń.

• <u>Stopień zagęszczenia (I_D)</u>

Stopień zagęszczenia gruntów niespoistych wyznaczono zgodnie z wytycznymi PN/B-04452 (I_D wg Borowczyka):

 $I_D = 0,709 \log q_c - 0,165$

• <u>Stopień plastyczności (IL)</u>

Stopień plastyczności gruntów spoistych oszacowano metodą Geoteko:

$$I_L = A - 0.5 \log (q_t - \sigma'_{vo}),$$

gdzie:

 q_t – opór na stożku netto q_t = q_c + $u_2(1-a)$ σ'_{vo} – pionowe efektywne naprężenie geostatyczne A – wsp. zależny od rodzaju gruntu, przyjęto: A=0,30 dla lessów

A=0,40 dla pozostałych gruntów drobnoziarnistych

• <u>Wytrzymałość na ścinanie w warunkach bez odpływu (Su)</u>

Wytrzymałość gruntów spoistych na ścinanie w warunkach bez odpływu obliczono zgodnie z wytycznymi PN/B-04452 (wg Schmertmanna, 1978)

 $S_u = (q_t - \sigma_{vo})/N_{kt},$ gdzie: Nkt – współczynnik empiryczny, przyjęto: Nkt =20 (dla gruntów mineralnych) Nkt =25 (dla gruntów organicznych)

• <u>Kąt tarcia wewnętrznego (φ)</u>

Wartości kąta tarcia wewnętrznego gruntów niespoistych oszacowano zgodnie z wytycznymi Eurokodu 7 i DIN 4094 (wg Bergdahla, 1993):

 $\phi = 13,5 \log q_c + 23$

Zastosowane podejście obliczeniowe jest właściwe dla źle uziarnionych piasków, przy oporze stożka q $_c$ w zakresie 5 – 28 MPa.

Wyniki sondowań CPTU wraz z interpretacją przedstawiono w załącznikach 3.1 – 3.3.

Badania dylatometrem płaskim Marchettiego

Wykonano 3 testy DMT do głębokości 8,8 – 10,0 m ppt. Łączny metraż badań wyniósł 28,6 mb. Końcówka dylatometru zagłębiana była przy wykorzystaniu urządzenia hydraulicznego firmy PAGANI model TG 63 200. Badania wykonywano zgodnie z międzynarodowymi standardami ISSMGE TC16.

Szczegółowy opis zastosowanej metodyki badań i interpretacji wyników zamieszczono w raporcie (zał. 4).

Badania laboratoryjne

Do Laboratorium Badawczego Katedry Geotechniki i Wytrzymałości Materiałów Wydziału Inżynierii Lądowej Politechniki Krakowskiej przekazano 6 prób gruntu:

- otwór 55+080, głębokość 2,8-3,3 m,
- otwór 55+080, głębokość 5,5-6,0 m,
- otwór 55+380, głębokość 3,3-3,8 m,
- otwór 55+380, głębokość 4,3-4,8 m,
- otwór 55+560, głębokość 3,0-3,5 m,

- otwór 55+560, głębokość 4,9-5,4 m,

Wszystkie próby poddano badaniom laboratoryjnym, w następującym zakresie:

- wilgotność naturalna,

- zawartość części organicznych,

- gęstość objętościowa,
- gęstość objętościowa szkieletu gruntowego,

- ściśliwość gruntu – badania w edometrze,

wartości efektywne kąta tarcia wewnętrznego i spójności – badania w aparacie trójosiowego ściskania metodą CIU.

Wyniki badań laboratoryjnych prób gruntu oraz szczegółowy opis metodyki wykonanych badań przedstawiono w załączniku 5.

3. UWARUNKOWANIA GEOLOGICZNE

Pod względem geologicznym teren badań położony jest w skrajnej, przykarpackiej części zapadliska przedkarpackiego – rozległego obniżenia tektonicznego powstałego na przedpolu Karpat, wypełnionego osadami trzeciorzędu i czwartorzędu.

Podłoże gruntowe odcinka linii kolejowej objętego badaniami (km 55+080 – 55+560) stanowią osady czwartorzędowe o zróżnicowanej genezie:

piaski i żwiry rzeczne oraz wodno-lodowcowe (pakiet V) o stropie na głębokości około 8,5
9,5 m ppt. W stropowej części reprezentowane przez jasnoszare piaski drobne z domieszką pyłu oraz piaski średnie ze żwirem;

- mułki zastoiskowe i jeziorne, grunty organiczne oraz lessy oglejone (pakiet II i III), reprezentowane przez torfy, namuły, gliny próchnicze, barwy ciemnobrązowej, brązowej, szarej i jasnoszarej. Grunty te dominują w strefie głębokości do 10 m;

 lessy i mułki lessopodobne (pakiet IV) – pyły i gliny pylaste barwy jasnobrązowej i szarobrązowej, występujące do głębokości 2,6 – 3,5 m ppt;

 grunty nasypowe (pakiet I), związane z budową przedmiotowej linii kolejowej o miąższości około 1 m.

4. WYNIKI BADAŃ

Przeprowadzone wiercenia, sondowania oraz badania laboratoryjne wykazały:

I/ Występowanie pod gruntami nasypowymi a lokalnie również pod cienką warstwą gruntów zastoiskowych ciągłej warstwy pyłów i pyłów z iłem w stanie twardoplastycznym (warstwa IVc) oraz plastycznym (IVa). Grunty te zalegają do głębokości około 2,6 – 3,5 m ppt i charakteryzują się:

- oporem na stożku qc = 1,5–4,2 MPa (IVc) oraz 0,6 MPa (IVa),

- stopniem plastyczności I_L = -0,06-0,22 (IVc) oraz 0,38 (IVa) – oszacowany na podstawie CPTU,

wytrzymałością na ścinanie w warunkach bez odpływu Su = 45-100 kPa (IVc) oraz 30 kPa (IVa),

- modułem edometrycznym wyznaczonym badaniami DMT $M_{oed} = 9-62$ MPa.

Na podstawie badań laboratoryjnych próby gruntu pobranej w km 55+080 z głębokości 2,8– 3,3 m ppt wyznaczono:

- wilgotność naturalną w_n = 23,2 %, gęstość objętościową ρ = 2,13-2,19 g/cm³,

- wartości efektywne parametrów wytrzymałościowych dla maksymalnego dewiatora naprężeń $\phi' = 36,3^{\circ}$, c' = 5,1 kPa oraz wartości rezydualne $\phi' = 31,3^{\circ}$, c' = 4,8 kPa,

- początkowy wskaźnik porowatości e₀ = 0,54,

- moduł edometryczny dla obciążeń pierwotnych w zakresie 50-100 kPa - $E_{oed} = 4,0$ MPa, moduł edometryczny dla obciążeń wtórnych w zakresie 50-100 kPa - $E_{oed} = 27,8$ MPa.

II/ Występowanie miąższej serii (około 5,2 – 6,9 m miąższości) gruntów zastoiskowych, zdominowanej przez grunty organiczne i grunty próchnicze, warstwy: II, IIIa, IIIb1 i IIIb2.

Grunty organiczne warstwy II o dużej zmienności cech geotechnicznych charakteryzują się:

- oporem na stożku qc = 0,5-3,1 MPa,

- stopniem plastyczności $I_L = 0,15-0,44 - oszacowany na podstawie CPTU,$

wytrzymałością na ścinanie w warunkach bez odpływu Su = 25-80 kPa, lokalnie do 120 kPa,

- modułem edometrycznym wyznaczonym badaniami DMT M_{oed} = 4-30 MPa.

Na podstawie badań laboratoryjnych prób gruntu pobranych w km: 55+080 z głębokości 5,5-6,0 m ppt oraz km 55+560 z głębokości 4,9-5,4 m ppt wyznaczono:

- wilgotność naturalną w_n = 31,3-33,8%, gęstość objętościową ρ = 1,84-1,91 g/cm³, zawartość części organicznych I_{om} = 7,0-9,1%,

- wartości efektywne parametrów wytrzymałościowych dla maksymalnego dewiatora naprężeń $\phi' = 32,9-33,3^{\circ}$, c' = 6,7-6,8 kPa oraz wartości rezydualne $\phi' = 27,3-28,4^{\circ}$, c' = 1,5-5,8 kPa,

- początkowy wskaźnik porowatości $e_0 = 0,84-0,89$,

- moduł edometryczny dla obciążeń pierwotnych w zakresie 50-100 kPa - $E_{oed} = 2,5-3,5$ MPa, moduł edometryczny dla obciążeń wtórnych w zakresie 50-100 kPa - $E_{oed} = 11,3-16,5$ MPa.

<u>Pyły z domieszką iłu i części organicznych w stanie plastycznym i miękkoplastycznym</u> (warstwa IIIa) charakteryzują się:

- oporem na stożku qc = 0,6-1,1 MPa,

- stopniem plastyczności $I_L = 0,39-0,54 - oszacowany na podstawie CPTU,$

- wytrzymałością na ścinanie w warunkach bez odpływu Su = 24-49 kPa,

- modułem edometrycznym wyznaczonym badaniami DMT M_{oed} = 1-12 MPa.

Na podstawie badań laboratoryjnych prób gruntu pobranych w km: 55+380 z głębokości 3,3-

3,8 m ppt i 4,3-4,8 m ppt oraz w km 55+560 z głębokości 3,0-3,5 m ppt wyznaczono:

- wilgotność naturalną w_n = 22,4-23,6%, miejscami 32,3%, gęstość objętościową ρ = 2,14-2,15 g/cm³ miejscami 1,97 g/cm³, zawartość części organicznych I_{om} do 2,9%,

- wartości efektywne parametrów wytrzymałościowych dla maksymalnego dewiatora naprężeń $\phi' = 34,8-36,8^{\circ}$, c' = 5,9-8,5 kPa oraz wartości rezydualne $\phi' = 32,1-34,5^{\circ}$, c' = 3,1-5,9 kPa,

- początkowy wskaźnik porowatości $e_0 = 0,59-0,69$, miejscami 1,00,

- moduł edometryczny dla obciążeń pierwotnych w zakresie 50-100 kPa - $E_{oed} = 3,5-4,4$ MPa, moduł edometryczny dla obciążeń wtórnych w zakresie 50-100 kPa - $E_{oed} = 21,6-34,8$ MPa.

<u>Iły i pyły, miejscami zawierające domieszki części organicznych w stanie twardoplastycznym</u> <u>i na granicy stanów: twardoplastycznego i plastycznego (warstwy: IIIb1 i IIIb2)</u> charakteryzują się:

- oporem na stożku qc = 1,4-2,3 MPa,

- stopniem plastyczności I_L = 0,11-0,34 – oszacowany na podstawie CPTU,

- wytrzymałością na ścinanie w warunkach bez odpływu Su = 55-95 kPa,
- modułem edometrycznym wyznaczonym badaniami DMT M_{oed} = 16-33 MPa.

III/ Występowanie w głębszym podłożu ciągłej warstwy zawodnionych piasków głównie w stanie zagęszczonym (Va2), miejscami w stanie średnio zagęszczonym (Va1), o stropie na głębokości około 8,5-9,5 m ppt. Stropowa część warstwy charakteryzuje się:

- oporem na stożku qc = 5,8-23,4 MPa,
- stopniem zagęszczenia $I_D = 0,43-0,80,$
- modułem edometrycznym wyznaczonym badaniami DMT M_{oed} = 39-132 MPa.

Naporowe zwierciadło wód podziemnych, nawiercone w stropie warstwy piasków stabilizuje się na głębokości około 5,1 – 5,9 m ppt i podlega sezonowym wahaniom.

5. PODSUMOWANIE

- W ramach dodatkowych badań geotechnicznych, na terenie budowy linii kolejowej E65 na odc. Zabrzeg – Zebrzydowice przeprowadzono wiercenia, sondowania CPTU, badania dylatometrem płaskim DMT oraz badania cech wytrzymałościowych i deformacyjnych prób gruntów, występujących w podłożu do głębokości 10 m ppt, w km 55+080 – 55+560.
- 2. Podłoże budują grunty o zróżnicowanych własnościach geotechnicznych. W strefie przypowierzchniowej występują grunty antropogeniczne, miejscami podścielone gruntami zastoiskowymi o łącznej miąższości około 0,8-2,0 m. Poniżej, do głębokości około 2,6-3,5 m ppt zalegają eoliczne pyły i pyły z iłem w stanie twardoplastycznym (IVc) i plastycznym (IVa). W strefie: 2,6 9,5 m ppt występują grunty zastoiskowe: organiczne (II) i mineralne, głównie w stanie plastycznym i miękkoplastycznym (IIIa). Na głębokości 8,5-9,5 m ppt nawiercono strop ciągłej warstwy piaszczystej (Val i Va2) o korzystnych własnościach geotechnicznych.
- 3. Naporowe zwierciadło wód podziemnych, nawiercone w stropie warstwy piasków stabilizuje się na głębokości około 5,1 5,9 m ppt i podlega sezonowym wahaniom.

- 4. Wyniki badań wraz z interpretacją przedstawiono w załącznikach graficznych (zał. 2-5).
- 5. Wyniki przeprowadzonych badań dodatkowych generalnie potwierdzają warunki gruntowo-wodne przedstawione dla analogicznego odcinka w "Sprawozdaniu z badań podłoża gruntowego linii kolejowej E65 na odc. Zabrzeg Zebrzydowice (Granica Państwa), km 53+100 59+000" (czerwiec 2024 r.).

	0.5	-			w.L.c.		KARTA DOKUMENTACY.	JNA		Z	ał.nr: 2.1		
	GE	0	SE	R	WIS		OTWORU BADAWCZEG	60		Wiertni	ca: WH02	25SG	
			2				Profil numer 55+080			X: 6563909 Y: 5529907	9.38 7.52		
Gr	nina: Cze	cho	wice	-Dzie	dzice	Obiekt:	Linia E65 Zabrzeg - Zebrzydowice	System wiercenia: Mechaniczny, udarowy					
Powiat: bielski Zl Województwo: I skie Do						Zleceni	odawca: PPM-T Sp. z o.o.	Rz dna: 261.18 m n.p.m. Gł boko : 10.50 m					
						00201 (Skala 1 : 7	5 Data	a wiercenia:	2024-09	-20	
ercenie	Gł boko zwierciadła wody	atygrafia	e Profil				Opis litologiczny	mbol gruntu Vilgotno		stan gruntu	boko pobr. próby	Warstwa	
Š	[m.p.p.t]	Str		[m]		[m]		ŝ		0,	উ	ge	
1	2	3	3	4	5	6	7	8	9	10	11	12	
				_	HH I		Grunty antropogeniczne (kruszywo, u el, glina), ciemnoszare	Mg	w			I	
				-1.0		0.6	Pył, jasnoszary i jasnobr zowy	Si	w	pl		IVa	
	1.8 ~~			-2.0 - -3.0		1.5	Pył, jasnoszary i jasnobr zowy	Si	w	tpl	2.4	IVc	
		orz d		- 		3.5	Pył z iłem, jasnoszary	clSi	w	pl	4.3	Illa	
	5.9	Czwart	α 	- 6.0		5.2	Grunty organiczne (namuł), szary	Or	w	pl/mpl	5.5		
				_		6.1	Grunty organiczne (namuł), szaro-br zowy	Or	w	tpl	6.5	П	
	76			7.0 8.0		6.8	Grunty organiczne (torf//namułem) , ciemnobr zowe	Or	W		7.5	11	
				-9.0		8.6	Ił, jasnoszary	CI	mw/w	tpl	8.9	IIIb2	
	9.3			- —10.0		9.3	Piasek drobny z pyłem, jasnoszary	siFSa	nw	zg		Va2	
						10.5							

		-			200 T 100		KARTA DOKUMENTACY	JNA		Z	ał.nr: 2.2				
	GE	0	SI	ER	WS		OTWORU BADAWCZEO	GO		Wiertni	ca: WH02	25SG			
			~				Profil numer 55+380	X: 6563611.50 Y: 5529850.88							
G	mina: Chy	/bie				Obiekt:	Linia E65 Zabrzeg - Zebrzydowice	System wiercenia: Mechaniczny, obrotowy							
Po	Powiat: cieszy ski Zło Województwo: L skie Do					Zleceni Dozór (odawca: PPM-T Sp. z o.o. jeol.: Sebastian Jarosz	Rz dna: 2	Rz dna: 261.37 m n.p.m. Gł boko : 9.00 m						
								Skala 1 : 7	75 Data	ata wiercenia: 2024-09-20					
Viercenie	Profil litologiczny Intercented Intercente			Profil ologiczny	Przelot	Opis litologiczny	Symbol gruntu	Wilgotno	Stan gruntu	ł boko pobr. próby	Warstwa geotechniczna				
>	[m.p.p.t]	0	2	[m]	-	[m]		0,	0 10		0	40			
\vdash	2	-	<u>с</u>	4	NAXAA	Ø	(Grupty aptropogeniczne (kruszuwo), czarpo	ð Ma	9	10	11	12			
							0.3	Grunty antropogeniczne (kamienie,kruszywo,glina), ciemnoszare	Mg	W			1		
				-2.0		1.1	Pył z iłem i humusem, jasnoszary	orclSi	W	pl		Illa			
						2.0	Pył z iłem, zielono-szary i jasnoszary	clSi	w	tpl	2.4	IVc			
				-	\sim	3.3	Pył, jasnoszary	Si	w	pl	3.3	Illa			
		σ		-4.0	~~~~~	3.9	Pył, br zowo-szary	Si	w	tpl		IIIb1			
	\mathbf{V}	Czwartorz	σ	5.0		4.2	Pył, jasnoszary	Si	w	pl	4.3	Illa			
	5.1					5. - -6.	- 6.0		5.1	ił z pyłem i humusemi, szaro-br zowy	orsiCl	w	tpl	5.6	IIIb2
				- 7 .0		6.7	Grunty organiczne (torf), ciemnobr zowe	Or	w/nw		7.2	11			
				-8.0		7.7	Pył z iłem i z piaskiem , jasnoszary	saclSi	w	tpl	8.2	IIIb1			
	8.5			F		8.5	Piasek z pyłem i iłem, jasnoszary	clsiSa	nw	szg	1	Va1			
			9.0			8.7 9.0	Piasek drobny, jasnoszary	FSa	nw	zg		Va2			

Zestawienie wartości średnich parametrów geotechnicznych warstw

CPTU 55+080

Strop	Spag	Symbol	qc	fs	u	Rf	ID	IL	Fi	Su	Nr worctwy
m	m	Symbol	MPa	MPa	MPa	%			deg	MPa	INI Waistwy
0	1,1	-	5,8	0,04	0,003	0,9					
1,1	1,5	Si	0,6	0,03	0,005	2,9		0,38		0,029	IVa
1,5	3,4	clSi	2,3	0,08	-0,052	3,9		0,14		0,100	IVc
3,4	4,8	clSi	0,8	0,02	-0,035	2,4		0,48		0,033	Illa
4,8	5,9	Or	1,0	0,02	0,000	1,5		0,44		0,034	II
5,9	7,1	Or	2,0	0,05	0,034	2,6		0,25		0,078	II
7,1	8,3	Or	3,1	0,21	-0,023	5,7		0,15		0,120	II
8,3	8,6	Or	1,8	0,11	-0,020	7,0		0,28		0,063	II
8,6	9,3	Cl	2,1	0,11	0,020	5,1		0,11		0,077	IIIb2
9,3	9,7	FSa	18,8	0,07	0,023	0,4	0,70		38,9		Va2

CPTU 55+380

Strop	Spag	Symbol	qc	fs	u	Rf	ID	IL	Fi	Su	Nr worstwa
m	m	Symbol	MPa	MPa	MPa	%			deg	MPa	INI Waistwy
0,0	0,5	-	5,6	0,08	0,000	1,4					I
0,5	1,4	-	1,0	0,04	-0,025	4,0					I
1,4	2,0	orclSi	0,7	0,03	-0,042	3,8		0,44		0,031	Illa
2,0	2,8	clSi	1,5	0,04	0,016	2,4		0,22		0,069	IVc
2,8	3,8	Si	1,1	0,02	0,162	2,2		0,41		0,049	Illa
3,8	5,1	clSi	1,1	0,04	0,021	3,1		0,39		0,046	Illa
5,1	5,7	Si	1,4	0,03	0,058	2,1		0,34		0,063	IIIb2
5,7	6,2	clSi	2,2	0,05	0,085	2,1		0,24		0,093	IIIb2
6,2	6,6	siCl	1,5	0,04	0,104	2,5		0,33		0,068	IIIb2
6,6	7,8	Or	2,3	0,14	0,003	6,1		0,24		0,079	II
7,8	8,3	sasiCl	1,8	0,07	0,104	3,3		0,29		0,084	IIIb1
8,3	8,6	clsiSa	5,8	0,05	-0,024	0,9	0,43		33,2		Va1
8,6	9,8	FSa	23,4	0,17	-0,048	0,7	0,80		40,0		Va2

CPTU 55+560

Strop	Spag	Sumbol	qc	fs	u	Rf	ID	IL	Fi	Su	Nr. waretway
m	m	Symbol	MPa	MPa	MPa	%			deg	MPa	INI Waistwy
0,0	1,3	-	0,6	0,02	0,000	1,6					
1,3	1,8	Or	0,5	0,03	0,008	6,8		0,60		0,017	II
1,8	2,1	Si	2,5	0,05	0,033	2,2		0,16		0,103	IVc
2,1	2,4	Si	4,2	0,10	0,024	2,5		-0,02		0,203	IVc
2,4	3,7	siCl	0,6	0,03	0,019	3,1		0,54		0,024	Illa
3,7	4,0	Si	1,6	0,02	0,024	1,2		0,30		0,071	IIIb1
4,0	4,7	siCl	1,0	0,03	0,024	2,6		0,43		0,042	Illa
4,7	5,9	Or	1,3	0,04	0,036	3,1		0,35		0,048	II
5,9	6,7	Or	1,6	0,04	0,050	2,5		0,32		0,054	II
6,7	7,2	Or	1,8	0,14	0,056	8,0		0,30		0,065	II
7,2	8,3	Or	2,8	0,16	0,056	6,2		0,20		0,099	II
8,3	8,8	clSi	1,7	0,05	0,068	3,1		0,32		0,072	IIIb1
8,8	9,6	siCl	2,3	0,10	0,092	4,2		0,25		0,095	IIIb2
9,6	9,7	siFSa	7,7	0,10	0,101	1,2	0,47		34,7		Va2

Załącznik nr 4

Badania dylatometrem płaskim Marchettiego w rejonie linii E65 Zabrzeg-Zebrzydowice

Opracował:

r 2. Guizo

dr inż. Rafał Gwóźdź geolog inżynierski, hydrogeolog upr. geol. VII-1861, XI-0117, XII-0094

grudzień 2024r.

1. Wstęp

Celem badania jest ocena parametrów geotechnicznych podłoża gruntowego w warunkach in situ na podstawie badań dylatometrem Marchettiego DMT.

2. Opis przeprowadzonych badań.

Do oceny parametrów podłoża gruntowego użyto dylatometru płaskiego DMT, który był zagłębiany przy wykorzystaniu urządzenia hydraulicznego firmy PAGANI model TG 63 200. Badania wykonywano zgodnie z międzynarodowymi standardami ISSMGE TC16. W ramach opracowania wykonano 3 sondowań DMT o głębokości: 10,0m – test 55+080; 8,80m – test 55+380; 9,80 – test 55+560. Łącznie wykonano 28,60 metrów bieżących. Wyniki badań zostały opracowane przy wykorzystaniu programu SDMT Elab Ink.

3. Interpretacja wyników.

Obliczone ciśnienia p_0 , p_1 pozwalają na wyznaczenie wskaźników dylatometrycznych, takich jak: wskaźnik materiałowy l_d , wskaźnika naprężenia poziomego K_d i moduł dylatometryczny E_d . Na ich podstawie wyznaczono parametry geotechniczne podłoża gruntowego (tab. 1). Przy interpretacji współczynnika prekonsolidacji OCR i współczynnika parcia spoczynkowego Ko zastosowano formuły Lunne 1989. Kalibracja współczynnika prekonsolidacji OCR, z uwzględnieniem badań edometrycznych przedstawia wykres nr 1.

1. Podsumowanie.

- Wyniki przeprowadzonych badań zostały przedstawione w formie zestawień tabelarycznych oraz wykresów prezentujących wartości poszczególnych parametrów geotechnicznych wraz z głębokością.
- Interpretację rodzaju gruntu dokonaną na podstawie badań DMT należy traktować jako przybliżoną, dlatego badania DMT powinny być wykonywane w sąsiedztwie otworów wiertniczych.
- Współczynnik parcia spoczynkowego K₀, współczynnik prekonsolidacji OCR, wytrzymałość na ścinanie w warunkach bez odpływu C_u wyznaczono tylko dla gruntów spoistych. Kąt tarcia wewnętrznego φ wyznaczono tylko dla gruntów niespoistych. Wynika to z metodyki badania.

Nazwa parametru	Równanie	Równanie				
Skorygowanej pomierzon	e wartości ciśnienia gazu					
Ciśnienie <i>p</i> ₀	$p_0 = 1.05 (A - Z_M + \Delta A) - 0.05 (A - Z_M + \Delta A)$	$(B-Z_{M})$	– Δ <i>Β</i>)	Z _M –wskazanie		
Ciśnienie <i>p</i> 1	$p_1 = B - Z_M - \Delta B$	$p_1 = B - Z_M - \Delta B$				
Ciśnienie p ₂	$p_2 = C - Z_M + \Delta A$					
Wskaźniki dylatometryczr	ne					
Współczynnik materiałowy	$ld = (p_1 - p_0) / (p_0 - u_0)$		<i>u</i> ₀= hydrosta porowe	tyczne ciśnienie		
Współczynnik napreż poziomego	\dot{z} enia $K_{d} = (p_0 - u_0) / \sigma'_{v_0}$		σ΄ _{v0} = pionowe naprężenie efektywne			
Moduł dylatometryczny	$E_d = 34.7 (p_1 - p_0)$					
Parametry geotechniczne	gruntu wyprowadzone na pods	tawie v	vskaźników	dylatometrycznych		
Współczynnik parcia spoczynkowego	$K_0 = 0,34 Ka^{0.54}$ wg Lunne 1989	dla <i>Id</i>	dla <i>la</i> < 1.2 *			
Współczynnik prekonsolidacji	<i>OCR</i> = 0.3 <i>Kd</i> ^{1.17} wg Lunne 1989	dla <i>I</i> d	< 1.2			
Wytrzymałość na ścinanie bez odpływu	$C_{\rm U} = 0.22 \ \sigma'_{\rm V0} \ (0.5 \ {\rm Ka})^{1.25}$	dla <i>la</i> < 1.2				
Kat tarcia wewnętrznego gruntów niespoistych	$\varphi = 28^{\circ} + 14.6^{\circ} \log K_d - 2.1^{\circ} \log^2 K_d$	dla <i>la</i> > 1.8 *				
Współczynnik konsolidacji	$c_h \approx 7 \mathrm{cm}^2/t_{\mathrm{tex}}$	t _{lex} odczytujemy z krzywej dyssypacji wykresu <i>A</i> =log <i>t</i>				
Współczynnik filtracji	$\kappa_h = c_h \gamma_w / M_h$	$(M_h \approx K_0 E_d)$				
Ciężar objetościowy gruntu	γ - odczytujemy z rys. 2					
Moduł edometryczny	$M_{oed} = R_M E d$	la ≤ 0. 0.6 < la la≥ 3 Ka > 1	$6 \qquad R_M = 0$ $R_M = R_M = R_M = 0$ $R_M = 0$ $R_M = 0$ $0 \qquad R_M = 0.3$	0.14+2.36 log K a M ₀ + (2.5 - R _M) log K a 0.14 + 0.15 (<i>la</i> - 0.6) .5 + 2 log K a 12 + 2.18 log K a		
Hydrostatyczne ciśnienie porowe w gruncie	$u_0 = p_2 = C - Z_M + \Delta A$	dla gr	untów dobrze	e przepuszczalnych		
[^] Jezeli <i>la</i> < 1.2 - grunty spo * Jeżeli <i>la</i> > 1.8 - grunty nies	oiste spoiste					

Tab	1	Wzorv	obliczen	iowe do	inter	oretacii	badań	dvlatom	etrem	DMT
rap.		vvzory		iowc uc	micip	Jiclacji	Dauan	uyiatom	CuCIII	

* Jeżeli la > 1.8 - grunty niespoiste

Uwaga: I_d to wskaźnik materiałowy w badaniu DMT, a nie stopień zagęszczenia

Wykres nr 1. Kalibracja współczynnika prekonsolidacji OCR dla testów DMT i badań edometrycznych.

SUPERIMPOSED LK-93-z-z GEOSERWIS 55+080 DEPTH (m) 10 ဖ $\mathbf{\infty}$ ω Ν 0 ი ы 4 _ 7 TEST 0 0 RESULTS OVERCONSOLIDATION RATIO: Ocr **_** -55+380 Zabrzeg - Zebrzydowice PPM-T Sp. z. o. o. N \mathbf{N} ω ω 55+560 4 4 С S

SUPERIMPOSED LK-93-z-z GEOSERWIS 55+080 DEPTH (m) 10 ဖ $\mathbf{\infty}$ ω Ν 0 ი ы 4 _ 7 TEST 0 0 EARTH PRESSURE COEFFICIENT: Ko RESULTS 0.2 0.2 55+380 Zabrzeg - Zebrzydowice PPM-T Sp. z. o. o. 0.4 0.4 0.6 0.6 55+560 0.8 0.8

55+090	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
557060	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 30 kPa
20 09 2024	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 11 kPa
GEOSEBWIS	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
PPM-T Sp. z. o. o.	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
LK-93-z-z	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Zabrzeg - Zebrzydowice	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw = 7.6 m
55+080	Uo = Pore pressure	available, apply suitable factor)	

WaterTable at 7.60 m Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001 EXCEPT: Ko = 0.34 x Kd ^ 0.54 + 0.0 OCR = 0.3 x Kd ^ 1.17 + 0.0

1.014030516429415.71700.799.64.51.24.211.127CLAYEY SILT1.415577015675917.72300.718.44.21.13.69.727CLAYEY SILT1.415577015675917.72303.866.720.93945.0SAND1.6235100022998918.62703.328.526.44062.3SAND2.022075022673918.63102.687.521.53948.3SILTY SAND2.022075022673918.63402.286.617.83937.7SILTY SAND2.420043022141916.74100.905.36.90.842.112.931SILT2.621544023642916.74500.825.36.70.832.112.433SILT2.824047026145916.74800.765.46.90.852.212.931SILT3.024051025949916.75500.665.97.40.892.414.647CLAYEY SILT3.440075041573917.75	55+080 DESCRIPTION	Cu (kPa)	M (MPa)	Phi (Deg)	Ocr	Ko	Ud	Ed (MPa)	Kd	Id	Uo (kPa)	Sigma' (kPa)	Gamma. (kN/m^3)	P2 (kPa)	P1 (kPa)	Po (kPa)	C (kPa)	B (kPa)	A (kPa)	Z (m)
1.01403031642941.1.717000.798.41.1.71.1.21.1.727CLAPET SILT1.415577015675917.72000.718.44.21.13.69.727CLAPET SILT1.415577015675917.72303.866.720.93945.0SAND1.6235100022998918.63102.687.521.53948.3SILTY SAND2.022075022673918.63402.286.617.83948.3SILTY SAND2.420043022141916.74100.905.36.90.842.112.931SILT2.621544023642916.74800.765.46.90.852.212.931SILT2.824047026145916.75100.935.08.30.812.015.136SILT3.024051025949916.75500.665.97.40.892.414.647CLAPEY SILT3.624537027135916.76500.153.61.24.31.830CLAY3.4400750415739			11 1		12	1 2		4 5	96	0 70	0	17	15 7		204	164		305	140	1 0
1.415577015675917.72303.866.720.93945.0SAND1.6235100022998918.62703.328.526.44062.3SAND1.823086023184918.63102.687.521.53948.3SILTY SAND2.022075022673918.63402.286.617.83948.3SILTY SAND2.420043022141916.74100.905.36.90.842.112.931SILT2.621544023642916.74500.825.36.70.832.112.433SILT2.624047026145916.74800.765.46.90.852.212.937CIAYEY SILT3.024051025949916.75500.665.97.40.892.414.647CIAYEY SILT3.440075041573917.75800.787.111.30.983.024.363CIAYEY SILT3.624537027135916.76200.334.43.10.761.75.136CIAYEY SILT3.820528023326915.7	CLATET SILL	27	9.7		3.6	1 1		4.5	9.0	0.79	0	20	15.7		294	169		300	140	1 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAND	21	45 0	30	5.0	1.1		20.9	67	3 86	ñ	23	17 7		759	156		770	155	1 4
1.8 230 860 231 849 16.6 31 0 2.68 7.5 21.5 39 48.3 SILTY SAND 2.0 220 750 226 739 18.6 34 0 2.28 6.6 17.8 39 37.7 SILTY SAND 2.4 200 430 221 484 16.7 38 0 1.23 5.7 9.3 18.0 SANDY SILT 2.4 200 430 221 419 16.7 41 0 0.90 5.3 6.9 0.84 2.1 12.9 31 SILTY SAND 2.6 215 440 236 429 16.7 45 0 0.82 5.3 6.7 0.83 2.1 12.4 33 SILT 2.8 240 470 261 459 16.7 51 0 0.93 5.0 8.3 0.81 2.0 15.1 36 SILT 3.2 305 550 325 539 16.7 55 0 0.66 5.9	SAND		62 3	40				20.9	85	3 32	ő	23	18 6		080	220		1000	235	1 6
1.10 2.00 2.01	STLTY SAND		48 3	30				20.4	75	2 68	ň	31	18 6		849	223		860	230	1.0
1.10 1.00 1.01 1.10	STLTY SAND		37 7	39				17.8	6.6	2 28	õ	34	18 6		739	226		750	220	2 0
2.4 200 430 221 419 16.7 41 0 0.90 5.3 6.9 0.84 2.1 12.9 31 SILT 2.6 215 440 236 429 16.7 45 0 0.82 5.3 6.7 0.83 2.1 12.9 31 SILT 2.8 240 470 261 459 16.7 48 0 0.76 5.4 6.9 0.85 2.2 12.9 37 CLAYEY SILT 3.0 240 510 259 499 16.7 51 0 0.93 5.0 8.3 0.81 2.0 15.1 36 SILT 3.2 305 550 325 539 16.7 55 0 0.66 5.9 7.4 0.89 2.4 14.6 47 CLAYEY SILT 3.4 400 750 415 739 17.7 58 0 0.78 7.1 11.3 0.98 3.0 24.3 63 CLAYEY SILT 3.6 245 370	SANDY STLT		18 0					93	57	1 23	ő	38	16.7		484	217		495	200	22
2.6 215 440 236 429 16.7 45 0 0.82 5.3 6.7 0.83 2.1 12.4 33 SILT 2.8 240 470 261 459 16.7 48 0 0.76 5.4 6.9 0.85 2.2 12.9 37 CLAYEY SILT 3.0 240 510 259 499 16.7 51 0 0.93 5.0 8.3 0.81 2.0 15.1 36 SILT 3.2 305 550 325 539 16.7 55 0 0.66 5.9 7.4 0.89 2.4 14.6 47 CLAYEY SILT 3.4 400 750 415 739 17.7 58 0 0.78 7.1 11.3 0.98 3.0 24.3 63 CLAYEY SILT 3.6 245 370 271 359 16.7 62 0 0.33 4.4 3.1 0.76 1.7 5.1 36 CLAY 3.8 205 280	SILT	31	12.9		2.1	0.84		6.9	5.3	0.90	õ	41	16.7		419	221		430	200	2.4
2.8 240 470 261 459 16.7 48 0 0.76 5.4 6.9 0.85 2.2 12.9 37 CLAYEY SILT 3.0 240 510 259 499 16.7 51 0 0.93 5.0 8.3 0.81 2.0 15.1 36 SILT 3.2 305 550 325 539 16.7 55 0 0.66 5.9 7.4 0.89 2.4 14.6 47 CLAYEY SILT 3.4 400 750 415 739 17.7 58 0 0.78 7.1 11.3 0.98 3.0 24.3 63 CLAYEY SILT 3.6 245 370 271 359 16.7 62 0 0.33 4.4 3.1 0.76 1.7 5.1 36 CLAYEY 3.8 205 280 233 269 15.7 65 0 0.15 3.6 1.2 0.63 1.2 4.3 27 SILTY CLAY 4.2 180 240 </td <td>SILT</td> <td>33</td> <td>12.4</td> <td></td> <td>2.1</td> <td>0.83</td> <td></td> <td>6.7</td> <td>5.3</td> <td>0.82</td> <td>Ō</td> <td>45</td> <td>16.7</td> <td></td> <td>429</td> <td>236</td> <td></td> <td>440</td> <td>215</td> <td>2.6</td>	SILT	33	12.4		2.1	0.83		6.7	5.3	0.82	Ō	45	16.7		429	236		440	215	2.6
3.0 240 510 259 499 16.7 51 0 0.93 5.0 8.3 0.81 2.0 15.1 36 SILT 3.2 305 550 325 539 16.7 55 0 0.66 5.9 7.4 0.89 2.4 14.6 47 CLAYEY SILT 3.4 400 750 415 739 17.7 58 0 0.78 7.1 11.3 0.98 3.0 24.3 63 CLAYEY SILT 3.6 245 370 271 359 16.7 62 0 0.33 4.4 3.1 0.76 1.7 5.1 36 CLAYEY SILT 3.8 205 280 233 269 15.7 65 0 0.15 3.6 1.2 0.68 1.3 1.8 30 CLAY 4.0 190 320 216 309 15.7 68 0 0.43 3.2 3.2 0.61 1.1 0.9 25 MID AND/OR PE 4.4 190 295 </td <td>CLAYEY SILT</td> <td>37</td> <td>12.9</td> <td></td> <td>2.2</td> <td>0.85</td> <td></td> <td>6.9</td> <td>5.4</td> <td>0.76</td> <td>Ó</td> <td>48</td> <td>16.7</td> <td></td> <td>459</td> <td>261</td> <td></td> <td>470</td> <td>240</td> <td>2.8</td>	CLAYEY SILT	37	12.9		2.2	0.85		6.9	5.4	0.76	Ó	48	16.7		459	261		470	240	2.8
3.2 305 550 325 539 16.7 55 0 0.66 5.9 7.4 0.89 2.4 14.6 47 CLAYEY SILT 3.4 400 750 415 739 17.7 58 0 0.78 7.1 11.3 0.98 3.0 24.3 63 CLAYEY SILT 3.6 245 370 271 359 16.7 62 0 0.33 4.4 3.1 0.76 1.7 5.1 36 CLAYEY SILT 3.8 205 280 233 269 15.7 65 0 0.15 3.6 1.2 0.63 1.2 4.3 27 SILTY CLAY 4.0 190 320 216 309 15.7 68 0 0.43 3.2 3.2 0.63 1.2 4.3 27 SILTY CLAY 4.2 180 240 209 229 13.7 71 0 0.10 2.9 0.7 0.61 1.1 0.9 25 MID AND/OR FE 4.4 190	SILT	36	15.1		2.0	0.81		8.3	5.0	0.93	Ō	51	16.7		499	259		510	240	3.0
3.4 400 750 415 739 17.7 58 0 0.78 7.1 11.3 0.98 3.0 24.3 63 CLAYEY SILT 3.6 245 370 271 359 16.7 62 0 0.33 4.4 3.1 0.76 1.7 5.1 36 CLAYEY SILT 3.8 205 280 233 269 15.7 65 0 0.15 3.6 1.2 0.68 1.3 1.8 30 CLAY 4.0 190 320 216 309 15.7 68 0 0.43 3.2 3.2 0.63 1.2 4.3 27 SILTY CLAY 4.2 180 240 209 229 13.7 71 0 0.10 2.9 0.61 1.1 2.9 26 CLAY 4.4 190 295 217 284 15.7 74 0 0.31 2.9 2.3 0.61 1.1 2.9 26 CLAY 4.6 190 300 217 <t< td=""><td>CLAYEY SILT</td><td>47</td><td>14.6</td><td></td><td>2.4</td><td>0.89</td><td></td><td>7.4</td><td>5.9</td><td>0.66</td><td>0</td><td>55</td><td>16.7</td><td></td><td>539</td><td>325</td><td></td><td>550</td><td>305</td><td>3.2</td></t<>	CLAYEY SILT	47	14.6		2.4	0.89		7.4	5.9	0.66	0	55	16.7		539	325		550	305	3.2
3.6 245 370 271 359 16.7 62 0 0.33 4.4 3.1 0.76 1.7 5.1 36 CLAY 3.8 205 280 233 269 15.7 65 0 0.15 3.6 1.2 0.68 1.3 1.8 30 CLAY 4.0 190 320 216 309 15.7 68 0 0.43 3.2 3.2 0.63 1.2 4.3 27 SILTY CLAY 4.2 180 240 209 229 13.7 71 0 0.10 2.9 0.7 0.61 1.1 0.9 25 MID AND/OR PE 4.4 190 295 217 284 15.7 74 0 0.31 2.9 2.3 0.61 1.1 2.9 26 CLAY 4.6 190 300 217 289 15.7 77 0 0.33 2.8 2.5 0.59 1.0 3.0 26 SILTY CLAY 4.8 200 275 <td< td=""><td>CLAYEY SILT</td><td>63</td><td>24.3</td><td></td><td>3.0</td><td>0.98</td><td></td><td>11.3</td><td>7.1</td><td>0.78</td><td>0</td><td>58</td><td>17.7</td><td></td><td>739</td><td>415</td><td></td><td>750</td><td>400</td><td>3.4</td></td<>	CLAYEY SILT	63	24.3		3.0	0.98		11.3	7.1	0.78	0	58	17.7		739	415		750	400	3.4
3.8 205 280 233 269 15.7 65 0 0.15 3.6 1.2 0.68 1.3 1.8 30 CLAY 4.0 190 320 216 309 15.7 68 0 0.43 3.2 3.2 0.63 1.2 4.3 27 SILTY CLAY 4.2 180 240 209 229 13.7 71 0 0.10 2.9 0.7 0.61 1.1 0.9 25 MUD AND/R PE 4.4 190 295 217 284 15.7 74 0 0.31 2.9 2.3 0.61 1.1 0.9 26 CLAY 4.6 190 300 217 289 15.7 77 0 0.33 2.8 2.5 0.59 1.0 3.0 26 SILTY CLAY 4.8 200 275 228 264 15.7 80 0 0.16 2.8 1.2 0.60 1.0 1.5 27 CLAY 5.0 225 360	CLAY	36	5.1		1.7	0.76		3.1	4.4	0.33	0	62	16.7		359	271		370	245	3.6
4.0 190 320 216 309 15.7 68 0 0.43 3.2 3.2 0.63 1.2 4.3 27 SILTY CLAY 4.2 180 240 209 229 13.7 71 0 0.10 2.9 0.7 0.61 1.1 0.9 25 MID AND/OR PE 4.4 190 295 217 284 15.7 74 0 0.31 2.9 2.3 0.61 1.1 0.9 25 MID AND/OR PE 4.6 190 300 217 284 15.7 77 0 0.33 2.8 2.5 0.59 1.0 3.0 26 CLAY 4.8 200 275 228 264 15.7 80 0 0.16 2.8 1.2 0.60 1.0 1.5 27 CLAY 5.0 225 360 250 349 16.7 83 0 0.39 3.4 0.62 1.1 4.3 30 SILTY CLAY 5.2 300 440 325	CLAY	30	1.8		1.3	0.68		1.2	3.6	0.15	0	65	15.7		269	233		280	205	3.8
4.2 180 240 209 229 13.7 71 0 0.10 2.9 0.7 0.61 1.1 0.9 25 MDD AND/OR PF 4.4 190 295 217 284 15.7 74 0 0.31 2.9 2.3 0.61 1.1 2.9 26 CLAY 4.6 190 300 217 289 15.7 77 0 0.33 2.8 2.5 0.59 1.0 3.0 26 SILTY CLAY 4.8 200 275 228 264 15.7 80 0 0.16 2.8 1.2 0.60 1.0 1.5 27 CLAY 5.0 225 360 250 349 16.7 83 0 0.39 3.0 3.4 0.62 1.1 4.3 30 SILTY CLAY 5.2 300 440 325 429 16.7 87 0 0.32 3.8 3.6 0.69 1.4 5.4 42 CLAY 5.4 320 470 <td< td=""><td>SILTY CLAY</td><td>27</td><td>4.3</td><td></td><td>1.2</td><td>0.63</td><td></td><td>3.2</td><td>3.2</td><td>0.43</td><td>0</td><td>68</td><td>15.7</td><td></td><td>309</td><td>216</td><td></td><td>320</td><td>190</td><td>4.0</td></td<>	SILTY CLAY	27	4.3		1.2	0.63		3.2	3.2	0.43	0	68	15.7		309	216		320	190	4.0
4.4 190 295 217 284 15.7 74 0 0.31 2.9 2.3 0.61 1.1 2.9 26 CLAY 4.6 190 300 217 289 15.7 77 0 0.33 2.8 2.5 0.59 1.0 3.0 26 SILTY CLAY 4.8 200 275 228 264 15.7 80 0 0.16 2.8 1.2 0.60 1.0 1.5 27 CLAY 5.0 225 360 250 349 16.7 83 0 0.39 3.0 3.4 0.62 1.1 4.3 30 SILTY CLAY 5.2 300 440 325 429 16.7 87 0 0.32 3.8 3.6 0.69 1.4 5.4 42 CLAY 5.4 320 470 345 459 167 90 0 0.33 3.8 4.0 0.70 1.4 6.0 45 SILTY CLAY	MUD AND/OR PEAT	25	0.9		1.1	0.61		0.7	2.9	0.10	0	71	13.7		229	209		240	180	4.2
4.6 190 300 217 289 15.7 77 0 0.33 2.8 2.5 0.59 1.0 3.0 26 SILTY CLAY 4.8 200 275 228 264 15.7 80 0 0.16 2.8 1.2 0.60 1.0 1.5 27 CLAY 5.0 225 360 250 349 16.7 83 0 0.39 3.0 3.4 0.62 1.1 4.3 30 SILTY CLAY 5.2 300 440 325 429 16.7 87 0 0.32 3.8 3.6 0.69 1.4 5.4 42 CLAY 5.4 320 470 345 459 167 90 0 3.3 8 4.0 0.70 1.4 6.0 45 SILTY CLAY	CLAY	26	2.9		1.1	0.61		2.3	2.9	0.31	0	74	15.7		284	217		295	190	4.4
4.8 200 275 228 264 15.7 80 0 0.16 2.8 1.2 0.60 1.0 1.5 27 CLAY 5.0 225 360 250 349 16.7 83 0 0.39 3.0 3.4 0.62 1.1 4.3 30 SILTY CLAY 5.2 300 440 325 429 16.7 87 0 0.32 3.8 3.6 0.69 1.4 5.4 42 CLAY 5.4 320 470 345 459 167 90 0 33 3.8 4.0 0.70 1.4 6.0 45 SILTY CLAY	SILTY CLAY	26	3.0		1.0	0.59		2.5	2.8	0.33	0	77	15.7		289	217		300	190	4.6
5.0 225 360 250 349 16.7 83 0 0.39 3.0 3.4 0.62 1.1 4.3 30 SILTY CLAY 5.2 300 440 325 429 16.7 87 0 0.32 3.8 3.6 0.69 1.4 5.4 42 CLAY 5.4 320 470 345 459 167 90 0 33 3.8 4.0 0.70 1.4 6.0 45 STUTY CLAY	CLAY	27	1.5		1.0	0.60		1.2	2.8	0.16	0	80	15.7		264	228		275	200	4.8
5.2 300 440 325 429 16.7 87 0 0.32 3.8 3.6 0.69 1.4 5.4 42 CLAY 5.4 320 470 345 459 16.7 90 0 0.33 3.8 4.0 0.70 1.4 6.0 45 STLTY CLAY	SILTY CLAY	30	4.3		1.1	0.62		3.4	3.0	0.39	0	83	16.7		349	250		360	225	5.0
5 4 320 470 345 459 16 7 90 0 0 33 3 8 4 0 0 70 1 4 6 0 45 STLTY (TAY	CLAY	42	5.4		1.4	0.69		3.6	3.8	0.32	0	87	16.7		429	325		440	300	5.2
	SILTY CLAY	45	6.0		1.4	0.70		4.0	3.8	0.33	0	90	16.7		459	345		470	320	5.4
5.6 340 520 363 509 16.7 93 0 0.40 3.9 5.1 0.71 1.5 7.8 47 SILTY CLAY	SILTY CLAY	47	7.8		1.5	0.71		5.1	3.9	0.40	0	93	16.7		509	363		520	340	5.6
5.8 350 530 373 519 16.7 97 0 0.39 3.9 5.1 0.71 1.5 7.7 48 SILTY CLAY	SILTY CLAY	48	7.7		1.5	0.71		5.1	3.9	0.39	0	97	16.7		519	373		530	350	5.8
6.0 340 545 362 534 16.7 100 0 0.48 3.6 6.0 0.68 1.4 8.7 46 SILTY CLAY	SILTY CLAY	46	8.7		1.4	0.68		6.0	3.6	0.48	0	100	16.7		534	362		545	340	6.0
6.2 385 680 402 669 17.7 103 0 0.66 3.9 9.3 0.71 1.5 14.2 52 CLAYEY SILT	CLAYEY SILT	52	14.2		1.5	0.71		9.3	3.9	0.66	0	103	17.7		669	402		680	385	6.2
6.4 430 740 447 729 17.7 107 0 0.63 4.2 9.8 0.74 1.6 15.8 59 CLAYEY SILT	CLAYEY SILT	59	15.8		1.6	0.74		9.8	4.2	0.63	0	107	17.7		729	447		740	430	6.4
6.6 510 1070 514 1059 17.7 110 0 1.06 4.7 18.9 0.78 1.8 32.9 70 SILT	SILT	70	32.9		1.8	0.78		18.9	4.7	1.06	0	110	17.7		1059	514		1070	510	6.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SILT	70	29.8		1.8	0.77		17.5	4.5	0.97	0	114	17.7		1019	516		1030	510	6.8
7.0 500 1030 506 1019 17.7 117 0 1.02 4.3 17.8 0.75 1.7 29.6 67 SILT	SILT	67	29.6		1.7	0.75		17.8	4.3	1.02	0	117	17.7		1019	506		1030	500	7.0
7.2 490 970 498 959 17.7 121 0 0.93 4.1 16.0 0.73 1.6 25.7 66 SILF	SILT	66	25.7		1.6	0.73		16.0	4.1	0.93	0	121	17.7		959	498		970	490	7.2
7.4 470 840 484 829 17.7 125 0 0.71 3.9 12.0 0.71 1.5 18.4 63 CLAYEY SILT	CLAYEY SILT	63	18.4		1.5	0.71		12.0	3.9	0.71	0	125	17.7		829	484		840	470	7.4
7.6 560 980 5/1 969 17.7 128 0 0.70 4.5 13.8 0.76 1.7 23.2 77 CLAYEY SILT	CLAYEY SILT	11	23.2		1./	0.76		13.8	4.5	0.70	0	128	17.7		969	5/1		980	560	7.6
7.8 465 830 500 819 17.7 130 2 0.64 3.8 11.1 0.70 1.4 16.9 64 CLAYEY SILT	CLAYEY SILT	64 CE	16.9		1.4	0.70		15 6	3.8	0.64	2	130	17.7		819	500		830	485	7.8
8.0 500 970 509 959 17.7 131 4 0.89 3.8 15.6 0.70 1.5 24.1 65 SILT	SILT OLANEW OTTE	65	24.1		1.5	0.70		10 5	3.8	0.89	4	131	17.7		959	509		970	500	8.0
8.2 455 640 468 629 17.7 155 6 0.78 5.5 12.5 0.67 1.5 17.9 56 CHAREN SILT	CLAIEI SILT	38	12.2		1.3	0.6/		12.5	3.5	0.78	0	133	17.7		629	400		840 71.0	455	8.2
8.4 3/0 /10 385 899 1/./ 134 8 0.85 2.8 10.9 0.59 1.0 13.5 45 SILT	SILT CLAVEN OTTO	45	15.5		1.0	0.59		11 6	2.8	0.83	10	126	17.7		099	202		020	370	0.4
0.0 4/0 050 404 019 1/./ 150 10 0./1 5.5 11.0 0.0/ 1.5 10.0 00 CLAYEY SLLT 0.0 570 1050 570 1030 17 127 12 0.01 4.1 16.0 0.73 1.6 25.6 75 0.55	CLAISI SILT	6U 7E	10.0 25 6		1.3	0.0/		16.0	3.5	0.71	10	127	177		1020	484		1050	4/0	0.0 0 0
0.0 500 1050 570 1057 17.7 157 12 0.01 4.1 10.0 0.75 1.0 25.0 75 5111	OTT TH	75	23.0		1.0	0.73		17 1	~±.⊥ / 1	0.01	14	120	17 7		1070	570		1000	500	0.0
9.0 JOU 1090 J077 1077 17.7 J37 14 0.00 4.1 17.1 0.75 1.0 27.4 75 JULI 9.2 480 1530 460 1519 19.6 141 16 2.39 3.2 36.8 35 53.4 STITU CAMP	STLTY SAND	15	27.4 53 /	35	1.0	0.75		36.8	32	2 30	16	141	19.6		1519	460		1530	480	9.0

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	P1 (kPa)	P2 (kPa)	Gamma (kN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ko	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	55+080 DESCRIPTION
9.4	470	1170		467	1159		17.7	143	18	1.54	3.2	24.0					33.3		SANDY SILT
9.6	310	1380		289	1369		18.6	144	20	4.02	1.9	37.5				32	39.1		SAND
9.8	450	1850		412	1839		19.6	146	22	3.65	2.7	49.5				34	67.1		SAND
10.0	630	2220		583	2209		19.6	148	24	2.91	3.8	56.4				36	93.1		SILTY SAND

551200	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
55+360	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 30 kPa
20 09 2024	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 11 kPa
CEOSEDWIS	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
GEOSEIWIS	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
PPM-T Sp. z. o. o.	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
LK-93-z-z	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Zabrzeg - Zebrzydowice	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw = 8.6 m
	Uo = Pore pressure	available, apply suitable factor)	

Water Level below end of sounding Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001 EXCEPT: Ko = $0.34 \times \text{Kd} \land 0.54 + 0.0$ OCR = $0.3 \times \text{Kd} \land 1.17 + 0.0$

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	P1 (kPa)	P2 (kPa)	Gamma (kN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ko	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	55+380 DESCRIPTION
1.0	50	245		72	234		16.7	17	0	2.24	4.3	5.6				36	9.6		SILTY SAND
1.2	55	245		78	234		16.7	20	0	2.02	3.8	5.4				36	8.7		SILTY SAND
1.4	60	250		83	239		16.7	24	Ó	1.90	3.5	5.4				35	8.2		SILTY SAND
1.6	130	305		153	294		15.7	27	0	0.92	5.7	4.9		0.87	2.3		9.4	22	SILT
1.8	195	345		220	334		16.7	30	0	0.52	7.3	4.0		0.99	3.1		8.6	33	SILTY CLAY
2.0	260	470		282	459		16.7	33	0	0.63	8.4	6.2		1.1	3.6		14.3	44	CLAYEY SILT
2.2	260	445		283	434		16.7	37	0	0.53	7.7	5.2		1.0	3.3		11.7	44	SILTY CLAY
2.4	330	690		344	679		17.7	40	0	0.97	8.6	11.6		1.1	3.7		27.3	54	SILT
2.6	280	445		304	434		16.7	44	0	0.43	7.0	4.5		0.97	2.9		9.6	46	SILTY CLAY
2.8	315	530		336	519		16.7	47	0	0.54	7.2	6.3		0.98	3.0		13.7	51	SILTY CLAY
3.0	300	545		320	534		16.7	50	0	0.67	6.4	7.4		0.92	2.6		15.1	47	CLAYEY SILT
3.2	290	465		313	454		16.7	54	0	0.45	5.8	4.9		0.88	2.4		9.5	45	SILTY CLAY
3.4	200	490		218	479		16.7	57	0	1.20	3.8	9.1					14.1		SANDY SILT
3.6	240	480		260	469		16.7	60	0	0.80	4.3	7.3		0.75	1.7		11.9	35	SILT
3.8	220	465		240	454		16.7	64	0	0.89	3.8	7.4		0.70	1.4		11.3	31	SILT
4.0	220	400		243	389		16.7	67	0	0.60	3.6	5.1		0.68	1.4		7.4	31	CLAYEY SILT
4.2	230	455		251	444		16.7	70	0	0.77	3.6	6.7		0.68	1.3		9.7	32	CLAYEY SILT
4.4	200	380		223	369		16.7	74	0	0.65	3.0	5.1		0.62	1.1		6.5	27	CLAYEY SILT
4.6	200	325		226	314		15.7	77	0	0.39	2.9	3.1		0.61	1.1		3.8	27	SILTY CLAY
4.8	200	350		225	339		16.7	80	0	0.51	2.8	4.0		0.59	1.0		4.7	27	SILTY CLAY
5.0	195	340		220	329		16.7	84	0	0.50	2.6	3.8		0.57	0.93		4.3	26	SILTY CLAY
5.2	190	400		212	389		16.7	87	0	0.84	2.4	6.2		0.55	0.85		6.6	24	SILT
5.4	210	440		231	429		16.7	90	0	0.86	2.6	6.9		0.56	0.90		7.7	27	SILT
5.6	255	460		277	449		16.7	94	0	0.62	3.0	6.0		0.61	1.1		7.5	34	CLAYEY SILT
5.8	390	740		405	729		17.7	97	0	0.80	4.2	11.3		0.74	1.6		18.2	53	SILT
6.0	460	840		473	829		17.7	100	0	0.75	4.7	12.4		0.79	1.8		21.4	64	CLAYEY SILT
6.2	445	880		455	869		17.7	104	0	0.91	4.4	14.4		0.76	1.7		24.0	61	SILT
6.4	495	880		508	869		17.7	107	0	0.71	4.7	12.5		0.79	1.8		21.8	69	CLAYEY SILT
6.6	490	990		497	979		17.7	111	0	0.97	4.5	10.7		0.76	1.7		28.4	67	SILT
6.8	460	/80		4/6	/69		17.7	115	0	0.62	4.2	10.2		0.73	1.0		16.3	63	CLAYEY SILT
7.0	390	1040		411	1000		17.7	100	0	0.48	3.5	0.9		0.67	1.3		9.8	52	SILTY CLAY
7.2	5/0	1040		2/9	1029		17 7	122	0	0.78	4.8	10.0		0.79	1.9		2/.3	(9)	CLAIEY SILT
7.4	4/0	860		483	849		17.7	125	0	0.76	3.9	11 2		0.70	1.5		19.5	63	CLAIEY SILT
1.0	330	680		345	669		1/./	129	U	0.94	2.1	د. ۲۲		0.58	0.95		13.3	41	SILT

7.8	490	820	506	809	17.7	132	0	0.60	3.8	10.5	0.70	1.4		16.0	65	CLAYEY SILT
8.0	560	940	573	929	17.7	136	0	0.62	4.2	12.4	0.74	1.6		20.0	76	CLAYEY SILT
8.2	415	1100	413	1089	17.7	139	0	1.64	3.0	23.5				31.4		SANDY SILT
8.4	480	840	494	829	17.7	143	0	0.68	3.5	11.6	0.66	1.3		16.5	62	CLAYEY SILT
8.6	820	2760	755	2749	19.6	146	0	2.64	5.2	69.2			37	132.2		SILTY SAND

55+560	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
55+560	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 30 kPa
20 09 2024	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 11 kPa
CEOSEDWIS	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
GEOSEGWIS	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
PPM-T Sp. z. o. o.	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
LK-93-z-z	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Zabrzeg - Zebrzydowice	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw = 7.5 m
	Uo = Pore pressure	available, apply suitable factor)	

WaterTable at 7.50 m

Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001 EXCEPT: Ko = $0.34 \times \text{Kd} \land 0.54 + 0.0$ OCR = $0.3 \times \text{Kd} \land 1.17 + 0.0$

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	P1 (kPa)	P2 (kPa)	Gamma (kN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ko	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	55+560 DESCRIPTION
1.0	125	210		153	199		15.7	17	0	0.30	9.0	1.6		1.1	3.9		3.8	24	CLAY
1.2	120	210		148	199		15.7	20	Ō	0.35	7.3	1.8		1.0	3.1		3.9	22	SILTY CLAY
1.4	100	185		128	174		15.7	23	Ō	0.36	5.5	1.6		0.85	2.2		3.0	18	SILTY CLAY
1.6	60	160		87	149		15.7	26	0	0.71	3.3	2.1		0.65	1.2		2.9	11	CLAYEY SILT
1.8	120	245		146	234		15.7	30	Ō	0.60	4.9	3.1		0.80	1.9		5.4	20	CLAYEY SILT
2.0	160	450		178	439		16.7	33	Ó	1.47	5.4	9.1					17.3		SANDY SILT
2.2	180	230		210	219		13.7	36	Ó	0.05	5.8	0.3		0.88	2.4		0.6	30	MUD AND/OR PEAT
2.4	160	560		172	549		17.7	39	Ō	2.19	4.4	13.1				37	22.9		SILTY SAND
2.6	160	320		184	309		15.7	42	0	0.68	4.4	4.3		0.75	1.7		7.2	25	CLAYEY SILT
2.8	170	270		197	259		15.7	45	0	0.31	4.3	2.1		0.75	1.7		3.5	26	CLAY
3.0	170	265		197	254		15.7	49	0	0.29	4.1	2.0		0.72	1.5		3.1	26	CLAY
3.2	165	280		191	269		15.7	52	0	0.41	3.7	2.7		0.69	1.4		4.0	25	SILTY CLAY
3.4	170	300		196	289		15.7	55	0	0.48	3.6	3.2		0.68	1.3		4.7	25	SILTY CLAY
3.6	170	280		197	269		15.7	58	0	0.37	3.4	2.5		0.66	1.3		3.5	25	SILTY CLAY
3.8	180	270		208	259		15.7	61	0	0.25	3.4	1.8		0.66	1.3		2.5	26	CLAY
4.0	200	360		224	349		16.7	64	0	0.56	3.5	4.3		0.67	1.3		6.2	28	SILTY CLAY
4.2	200	395		222	384		16.7	68	0	0.73	3.3	5.6		0.65	1.2		7.7	28	CLAYEY SILT
4.4	225	445		246	434		16.7	71	0	0.76	3.5	6.5		0.67	1.3		9.3	31	CLAYEY SILT
4.6	190	385		212	374		16.7	74	0	0.76	2.9	5.6		0.60	1.0		6.9	26	CLAYEY SILT
4.8	230	395		254	384		16.7	78	0	0.51	3.3	4.5		0.64	1.2		6.1	32	SILTY CLAY
5.0	245	430		268	419		16.7	81	0	0.56	3.3	5.2		0.65	1.2		7.2	33	SILTY CLAY
5.2	250	395		275	384		16.7	84	0	0.40	3.3	3.8		0.64	1.2		5.1	34	SILTY CLAY
5.4	310	570		329	559		16.7	88	0	0.70	3.8	8.0		0.69	1.4		12.0	42	CLAYEY SILT
5.6	300	530		321	519		16.7	91	0	0.62	3.5	6.9		0.67	1.3		9.9	41	CLAYEY SILT
5.8	340	700		354	689		17.7	94	0	0.95	3.8	11.6		0.69	1.4		17.6	46	SILT
6.0	285	470		308	459		16.7	98	0	0.49	3.1	5.2		0.63	1.1		6.9	38	SILTY CLAY
6.2	310	545		330	534		16.7	101	0	0.62	3.3	7.1		0.64	1.2		9.6	41	CLAYEY SILT
6.4	345	620		363	609		17.7	105	0	0.68	3.5	8.5		0.67	1.3		12.1	46	CLAYEY SILT
6.6	295	560		314	549		16.7	108	0	0.75	2.9	8.2		0.60	1.0		10.2	38	CLAYEY SILT
6.8	370	680		387	669		17.7	111	0	0.73	3.5	9.8		0.67	1.3		14.0	49	CLAYEY SILT
7.0	350	620		369	609		17.7	115	0	0.65	3.2	8.3		0.64	1.2		11.2	46	CLAYEY SILT
7.2	300	570		319	559		16.7	118	0	0.75	2.7	8.3		0.58	0.95		9.7	38	CLAYEY SILT
7.4	310	580		329	569		16.7	122	0	0.73	2.7	8.3		0.58	0.96		9.8	39	CLAYEY SILT
7.6	240	520		258	509		16.7	124	1	0.98	2.1	8.7		0.50	<0.8		8.1	29	SILT
7.8	370	720		385	709		17.7	125	3	0.85	3.0	11.3		0.62	1.1		14.6	47	SILT
8.0	370	720		385	709		17.7	127	5	0.85	3.0	11.3		0.61	1.1		14.4	46	SILT

8.2 8.4 8.6 8.8 9.0	450 340 450 525 560	800 750 720 950 1040		465 352 469 536 568	789 739 709 939 1029		17.7 17.7 17.7 17.7 17.7	129 130 132 133 135	7 9 11 13 15	0.71 1.13 0.53 0.77 0.83	3.6 2.6 3.5 3.9 4.1	11.3 13.4 8.3 14.0 16.0		0.67 0.57 0.67 0.71 0.73	1.3 0.93 1.3 1.5 1.6		16.3 15.8 11.8 21.7 25.6	58 40 58 68 73	CLAYEY SILT SILT SILTY CLAY CLAYEY SILT SILT
Z (m)	A (kPa)	B	с	Ро	P1	P2	Gamma	Sigma'	Uo	Id	Kd	Ed	Ud	Ko	Ocr	Phi	м	Cu	55+560
()	(KEA)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kN/m^3)	(kPa)	(kPa)			(MPa)				(Deg)	(MPa)	(kPa)	DESCRIPTION

ZAŁĄCZNIK NR 5

Geotechniczne badania laboratoryjne gruntów

wraz z opracowaniem wyników i określeniem charakterystycznych parametrów cech fizycznych i mechanicznych dostarczonych prób dla tematu:
 Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Zleceniodawca: Sebastian Jarosz GEOSERWIS

ul. Obozowa 57/13 30-383 Kraków

Umowa:

UMO/L09/0523 /2024

Kraków, grudzień 2024

OPIS PRZEPROWADZONYCH BADAŃ LABORATORYJNYCH

Celem opracowania jest określenie parametrów geotechnicznych prób gruntów dostarczonych przez Zleceniodawcę – Sebastian Jarosz GEOSERWIS, ul. Obozowa 57/13, 30-383 Kraków, a pochodzących z podłoża przebiegającej linii kolejowej E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa) w km 53+100-59+000.

Merytoryczną podstawę przeprowadzenia określenia parametrów geotechnicznych stanowiły własne badania laboratoryjne na dostarczonych sześciu próbach o nienaruszonej strukturze w postaci rdzeni.

Objęte programem badania wykonano zgodnie z przekazanym typowaniem przez Zleceniodawcę i określają następujące parametry:

- analiza makroskopowa,
- oznaczenie klasy zawartości węglanów CaCO₃,
- wilgotność naturalna *w_n*,
- gęstość objętościowa ρ,
- gęstość objętościowa szkieletu gruntu ρ_d ,
- gęstość właściwa szkieletu gruntu ρ_s ,
- zawartość części organicznych Iom,
- wytrzymałość na ścinanie bez odpływu *cufe*,
- ściśliwości pierwotnej edometryczne moduły i wtórnej $(E_{OED}),$ współczynnik konsolidacji Cv, współczynnik ściśliwości wtórnej $C\alpha$, wskaźnik ściśliwości Cc, wskaźnik odprężenia Cs, wskaźnik ściśliwości wtórnej Cr. moduł ściśliwości objętościowej m_{v} naprężenie prekonsolidacji o'p
- kąt tarcia wewnętrznego ¢' i spójność c' parametry efektywne, metoda *CU* (saturacja, konsolidacja i bez drenażu - odpływu w czasie ścinania), aparat trójosiowego ściskania – AT,

Parametry cech fizycznych i mechanicznych gruntów zostały wykonane zgodnie z normami:

- PN-81/B-03020:1981 Posadowienie bezpośrednie budowli. Obliczenia statyczne i projektowanie.
- PN-86/B-02480 Grunty budowlane. Określenia, symbole, podział i opis gruntów.
- PN-88/B-04481 Grunty budowlane. Badania Próbek gruntu.
- PKN-CEN ISO/TS 17892-1: 2009 Badania geotechniczne. Badania laboratoryjne gruntów. Część 1: Oznaczanie wilgotności
- PKN-CEN ISO/TS 17892-2: 2009 Badania geotechniczne. Badania laboratoryjne gruntów. Część 2: Oznaczanie gęstości gruntów drobnoziarnistych
- PN-EN ISO 14688-1:2018 Rozpoznanie i badania geotechniczne.
 Oznaczenie i klasyfikacja gruntów. Oznaczanie i opis
- PN-EN ISO 14688-2:2018 Rozpoznanie i badania geotechniczne.
 Oznaczenie i klasyfikacja gruntów. Zasady klasyfikowania
- PN-EN ISO 17892-5:2017 Rozpoznanie i badania geotechniczne. Badania laboratoryjne gruntów – Badania edometryczne gruntów
- PN-EN ISO 17892-9:2018 Rozpoznanie i badania geotechniczne. Badania laboratoryjne gruntów – Ściskanie trójosiowe z konsolidacją na próbkach całkowicie nasyconych wodą
- PN-EN ISO 17892-6:2017 Rozpoznanie i badania geotechniczne. Badania laboratoryjne gruntów. Badanie penetrometrem stożkowym

a) Badanie wilgotności naturalnej

Wilgotność naturalną oznaczono poprzez suszenie próbek w suszarce w temperaturze około 105 ÷110°C. Dla jednej próbki wilgotność oznaczano

jako średnią arytmetyczną z trzech (a przy dużej niejednorodności próbki z pięciu) pomiarów.

b) Przybliżone oznaczenie klasy zawartości węglanów - CaCO3

Przybliżoną zawartość węglanów oznaczono dla wszystkich próbek gruntu. Próbki przeznaczone do oznaczenia zostały zwilżone kilkoma kroplami 10% kwasu solnego (HCl). Na podstawie badania określono przybliżoną zawartość węglanu wapnia w procentach i odpowiadającą temu klasę zawartości węglanów.

c) Badanie gęstości objętościowej

Gęstość objętościową oznaczono dla wszystkich prób dokonując pomiarów próbki przy badaniach trójosiowych i edometrycznych, w zestawieniu wyników badań podano wartość średnią z wszystkich pomiarów.

d) Badanie gęstości objętościowej szkieletu gruntowego

Gęstość objętościową szkieletu gruntowego oznaczono dla wszystkich próbek gruntu wykorzystując wzór do obliczeń jako zależność wilgotności naturalnej i gęstości objętościowej.

e) Oznaczenie zawartości części organicznych

Zawartość części organicznych dla gruntów, które na podstawie analizy makroskopowej zostały zakwalifikowane jako grunty zawierające części organiczne, określono metodą oznaczenia strat masy przy prażeniu. Próbkę gruntu przeznaczoną do badania o masie nie mniejszej niż 300 g, dokładnie roztarto i wymieszano a następnie wysuszono w temperaturze 105 ÷ 110°C. Po wysuszeniu przygotowano dwie próby o masie około 10 g i wsypano do tygielków. Tygielek z gruntem prażono przez 4 h w piecu muflowym w temperaturze 500°C. Po 4 h tygielek z gruntem ostudzono w eksykatorze i zważono a następnie ponownie poddano prażeniu przez około 3 h. Czynność powtarzano do momentu uzyskania stałej masy.

f) Badanie penetrometrem stożkowym

Badanie penetrometrem stożkowym wykonano dla sześciu prób. Polega na wciskaniu stożka w grunt i mierzeniu stopnia penetracji tego stożka w gruncie. Przeprowadzono je w celu oszacowania wytrzymałości gruntu na ścinanie w warunkach bez odpływu. Badanie zostało wykonane na próbkach o nienaruszonej strukturze

g) Oznaczenie wartości efektywnych kąta tarcia φ' i spójności c' – metoda CU, aparat trójosiowego ściskania

Kąt tarcia wewnętrznego i spójność oznaczono dla wszystkich prób. Oznaczenie wartości efektywnego kąta tarcia wewnętrznego i kohezji zostało wykonane w aparacie trójosiowego ściskania brytyjskiej produkcji firmy "ELE", zgodnie z normą PN-EN ISO 17892-9:2018. Graficzną interpretację wyników przedstawiono na załącznikach. Naprężenia efektywne przy których miały być konsolidowane, a następnie ścinane poszczególne próbki, zostały ustalone - po wcześniejszym uzgodnieniu z projektantem, na podstawie wykonanych badań edometrycznych i wyznaczonych z tych badań ciśnień prekonsolidacji σ'_{p} . W przypadku metody *CU* próby poddawane były saturacji, a następnie konsolidacji, natomiast ścinanie prób odbywało się bez drenażu (zamknięty zawór ciśnienia back pressure co umożliwia dokonanie pomiaru ciśnienia wody w porach gruntu w czasie ścinania). Jako badania towarzyszące przy oznaczeniu kąta i spójności wykonano pomiar wilgotności i gęstości objętościowej próbki przed i po badaniu w aparacie trójosiowym, Wartości kąta i spójności podano dla maksymalnego dewiatora naprężeń oraz jako wartości rezydualne odpowiadające około 20 % odkształcenia osiowego.

h) Edometryczne moduły ściśliwości pierwotnej i wtórnej (E_{OED}), współczynnik konsolidacji Cv, współczynnik ściśliwości wtórnej $C\alpha$, wskaźnik ściśliwości Cc, wskaźnik odprężenia Cs, wskaźnik ściśliwości wtórnej Cr, moduł ściśliwości objętościowej m_v , naprężenie prekonsolidacji σ'_p

Edometryczne moduły ściśliwości zostały oznaczone w edometrach dla wszystkich prób. Graficzną interpretację wyników przedstawiono na załącznikach. Jako badania towarzyszące przy oznaczeniu modułów wykonano pomiar wilgotności i gęstości objętościowej próbek przed i po badaniu w edometrze, wyniki przedstawiono na załącznikach. Próbki poddawane były w pierwszej fazie obciążeniu pierwotnemu, następnie odciążeniu i ponownie obciążono do wartości naprężenia uwzględniającego obciążenie od projektowanego obiektu budowlanego. Dodatkowo przy badaniach edometrycznych oprócz modułów pierwotnych i wtórnych wyznaczono wskaźniki ściśliwości pierwotnej, wtórnej, odprężenia oraz współczynniki konsolidacji i ściśliwości wtórnej oraz moduły ściśliwości objętościowej, współczynniki przepuszczalności i wyznaczono naprężnie prekonsolidacyjne. Wszystkie policzone wartości podano w załącznikach graficznych do edometrów.

> Opracował: mgr inż. Marek Wawok

ZESTAWIENIE WYNIKÓW BADAŃ LABORATORYJNYCH

Nr otworu	Głęb. pobrania próbki [m]	Rodzaj gruntu – makroskopowo / <i>ISO</i>	Stan gruntu – makrosk.	Przybliżona zawartość CaCO ₃ [%] wg PN-75/ B-04481	Klasa zawartości węglanów	Wilgot. naturalna (średnia) wn śr [%]	Gęstość objęto. (średnia) psr [g/cm ³]	Gęstość objęto. szkiel. grunt. (średnia) <i>ρ</i> d śr [g/cm ³]	Gęstość właściwa szkiel. grunt. (przyjęta) p s [g/cm ³]
55.000	2,8-3,3	Pył / Pył ilasty (clSi)	pl	<1	Ι	23,22	2,19	1,78	2,67
55+080	5,5-6,0	Namuł gliniasty (Glina pylasta) / Ił pylasty (orsiCl)	pl	< 1	Ι	33,76	1,84	1,37	2,63
55.290	3,3-3,8	Pył / Pył ilasty (clSi)	pl	< 1	Ι	23,63	2,14	1,73	2,67
55+360	4,3-4,8	Pył / Pył ilasty (clSi)	pl	< 1	Ι	22,36	2,15	1,76	2,67
	3,0-3,5	Glina pylasta (próchniczna) / Ił pylasty (orsiCl)	pl	< 1	Ι	32,26	1,97	1,49	2,65
55+560	4,9-5,4	Namuł gliniasty (Glina pylasta) / Ił pylasty (orsiCl)	pl	<1	Ι	31,29	1,91	1,45	2,63
Suma		6	6	6	6	6	6	6	6

ZESTAWIENIE WYNIKÓW BADAŃ LABORATORYJNYCH

Nr otworu	Głęb. pobrania próbki [m]	Rodzaj gruntu – makroskopowo	Wytrzymałość na ścinanie bez odpływu <i>Cufc</i> [kPa] wg PN-EN ISO 17892-6:2017-06	Zawartość cz. organicznych Iom [%]
	2,8-3,3	Pył / Pył ilasty (clSi)	30,91	-
55+080	5,5-6,0	Namuł gliniasty (Glina pylasta) / Ił pylasty (orsiCl)	51,12	6,96
55.000	3,3-3,8	Pył / Pył ilasty (clSi)	25,16	-
55+380	4,3-4,8	Pył / Pył ilasty (clSi)	24,41	-
FE - FCO	3,0-3,5	Glina pylasta (próchniczna) / It pylasty (orsiCl)	44,74	2,89
000+00	4,9-5,4	Namuł gliniasty (Glina pylasta) / Ił pylasty (orsiCl)	83,00	9,11
Suma		6	6	3

ZESTAWIENIE WYNIKÓW BADAŃ LABORATORYJNYCH

Nr otworu	Głęb. pobrania próbki	Rodzaj gruntu –	Ścinanie – AT, wartości efekty dewiatora	metoda " <i>CIU</i> ", wne – dla max. naprężeń	Ścinanie – AT, wartości efektyw	metoda " <i>CIU</i> ", vne – rezydualne
	[m]	шактоѕкороwо	¢' [°]	c' [kPa]	¢' [°]	c' [kPa]
EE - 000	2,8-3,3	Pył / Pył ilasty (clSi)	36,31	5,14	31,28	4,77
55+080	5,5-6,0	Namuł gliniasty (Glina pylasta) / Ił pylasty (orsiCl)	33,27	6,82	28,40	5,80
55,290	3,3-3,8	Pył / Pył ilasty (clSi)	35,54	6,12	32,06	3,11
55+360	4,3-4,8	Pył / Pył ilasty (clSi)	34,83	5,93	32,20	5,80
55 · 560	3,0-3,5	Glina pylasta (próchniczna) / Ił pylasty (orsiCl)	36,82	8,51	34,51	5,94
33+300	4,9-5,4	Namuł gliniasty (Glina pylasta) / Ił pylasty (orsiCl)	32,87	6,69	27,32	1,49
Suma		6	6	6	6	6

zał. 4

Politechnika Krakowska Im. Tadeusza Kościuszki Katedra Geotechniki i Wytrzymałości Materiałów L9 Wydział Inżynierii Lądowej GiWM .

Temat: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Metoda <i>CIU</i> – bez drenażu							
				Parametry początkowe		Parametry końcowe	
Nr otw.	Gł. m	Rodzaj gruntu	Próbka	wilgotność %	gęstość obj. g/cm ³	wilgotność %	gęstość obj. g/cm ³
55+080 2,8-3,3		A	24,21	2,10	20,49	2,16	
	2,8-3,3 Pył / Py	Pył / Pył ilasty (clSi)	В	22,58	2,29	19,04	2,34
			С	23,22	2,23		

Sample testing details						
Standard	BS1377: part 8: 1990: Clauses 4,5,6,7 wg PN-EN ISO 17892-9:2018-05	Particle Density	2.67 g/cm3 (Assumed)			
Test Definition	Consolidated Undrained	Drainage location	Top & Side			

Specimen Details						
Specimen Reference	Specimen Reference A Initial Diameter 37.70 mm					
Initial Height 81.20 mm Membrane Thickness 0.28 mm						

SATURACJA – nasycenie próbki

Saturation Method	Back Pressure Increments	Cell Increments	50.7,49.4,50.7,kPa
Final Cell Pressure	150.9kPa	Back Increments	98.7,kPa
Final Pore Pressure	143.7kPa	Final B Value	1.045

KONSOLIDACJA

Cell Pressure	140.5kPa	Back Pressure	90.2kPa
Effective Pressure	50.3kPa	Final Pore Pressure Dissipation	103.13%
Final Pore Pressure	88.8 kPa		
Comments W czasie konsolidacji		dpływ wody następuje z góry	i dołu próbki

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions						
Rate of Axial Displacement	0.2 mm/min	Cell Pressure	140.2kPa			
Initial Pore Pressure	90.8kPa	Effective Stress at Start of Stage	49.4kPa			

Conditions at Failure						
Failure Criterion Maximum Deviator Stress						
Pore Pressure	41.6kPa Minor Effective Principal Stress 98.6kPa					
Deviator Stress	297.9kPa Major Effective Principal Stress 396.5kPa					
Axial Strain13.48%Effective Principal Stress Ratio4.022						
Deviator Stress Correction	Deviator Stress Correction 12.1kPa					

Zdjęcie – próbka A przed ścięciem

Zdjęcie – próbka A po ścięciu

Specimen Details						
Specimen Reference	Specimen ReferenceBInitial Diameter36.51 mm					
Initial Height 77.25 mm Membrane Thickness 0.28 mm						

Saturation Method	Back Pressure Increments	Cell Increments	50.2,50.2,49.9,kPa
Final Cell Pressure	150.5kPa	Back Increments	90.3,kPa
Final Pore Pressure	149.2kPa	Final B Value	1.005

KONSOLIDACJA

Cell Pressure	189.9kPa	Back Pressure	89.9kPa
Effective Pressure	100.0kPa	Final Pore Pressure Dissipation	100.66%
Final Pore Pressure	89.2 kPa		
Comments	omments W czasie konsolidacji o		i dołu próbki

NAPRĘŻENIE ŚCINAJĄCE – ODKSZTAŁCENIE PIONOWE

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions						
Rate of Axial Displacement	0.2 mm/min	Cell Pressure	190.8kPa			
Initial Pore Pressure	48.2kPa	Effective Stress at Start of Stage	142.6kPa			

Conditions at Failure						
Failure Criterion Maximum Deviator Stress						
Pore Pressure	51.8kPa Minor Effective Principal Stress 139.0kPa					
Deviator Stress	423.8kPa	Major Effective Principal Stress	562.8kPa			
Axial Strain	xial Strain 12.71% Effective Principal Stress Ratio 4.049					
Deviator Stress Correction	12.1kPa					

Zdjęcie – **próbka B przed** ścięciem

Zdjęcie – próbka B po ścięciu

Specimen Details				
Specimen Reference	С	Initial Diameter 37.50 mm		
Initial Height	78.32 mm	Membrane Thickness	0.28 mm	

Saturation Method	Back Pressure Increments	Cell Increments	50.7,49.9,49.8,kPa
Final Cell Pressure	151.6kPa	Back Increments	98.0,kPa
Final Pore Pressure	143.8kPa	Final B Value	1.025

KONSOLIDACJA

Cell Pressure	290.2kPa	Back Pressure	90.7kPa
Effective Pressure	199.5kPa	Final Pore Pressure Dissipation	100.45%
Final Pore Pressure	89.8 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

NAPRĘŻENIE ŚCINAJĄCE – ODKSZTAŁCENIE PIONOWE

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions				
Rate of Axial Displacement0.2 mm/minCell Pressure290.4kPa				
Initial Pore Pressure	90.1kPa	Effective Stress at Start of Stage	200.3kPa	

Conditions at Failure				
Failure Criterion Maximum Deviator Stress				
Pore Pressure	63.1kPa Minor Effective Principal Stress 227.0kPa			
Deviator Stress	684.8kPa	Major Effective Principal Stress	911.8kPa	
Axial Strain	13.23%	Effective Principal Stress Ratio	4.016	
Deviator Stress Correction	12.1kPa			

Zdjęcie – próbka C przed ścięciem

Zdjęcie – próbka C po ścięciu

WARTOŚĆ KĄTA I KOHEZJI DLA MAX. DEWIATORA NAPRĘŻEŃ

SUMMARY

Specimen Details			
Specimon Poteroneo	Effective Minor Principal Stress	Effective Major Principal Stress	
Specimen Reference	(σ ₃ ')	(σ 1')	
A	98.6kPa	396.5kPa	
В	139.0kPa	562.8kPa	
C	227.0kPa	911.8kPa	

WARTOŚĆ KĄTA I KOHEZJI – REZYDUALNE

Conditions at Failure						
Failure Criterion Residual Deviator Stress						
	Spec	cimen				
Parameters	Parameters A B C					
Pore Pressure	31.2kPa	16.7kPa	25.3kPa			
Deviator Stress	267.1kPa	384.2kPa	581.9kPa			
Axial Strain	19.83%	19.93%	19.85%			
Deviator Stress Correction	12.8kPa	12.9kPa	12.8kPa			
Minor Effective Principal Stress	109.0kPa	174.2kPa	264.7kPa			
Major Effective Principal Stress	376.1kPa	558.3kPa	846.6kPa			
Effective Principal Stress Ratio	3.450	3.206	3.198			

SUMMARY

Specimen Details			
Specimon Beference	Effective Minor Principal Stress	Effective Major Principal Stress	
Specimen Reference	(σ₃')	(σ ₁ ')	
A	109.3kPa	376.1kPa	
В	174.2kPa	558.3kPa	
С	264.7kPa	846.6kPa	

ŚCIEŻKI NAPRĘŻEŃ

Specimen Reference	Α	В	С
Stress Path s' [kPa]	247,55	350,90	569,40
Stress Path t' [kPa]	148,95	211,90	342,40

SIECZNE MODUŁY ODKSZTAŁCENIA

STOSUNEK EFEKTYWNYCH NAPRĘŻEŃ GŁÓWNYCH vs ODKSZTAŁCENIE PIONOWE

zał. 5

Politechnika Krakowska DK im. Tadeusza Kościuszki Katedra Geotechniki i Wytrzymałości Materiałów L9 Wydział Inżynierii Lądowej GiWM 25

Temat: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Metoda <i>CIU</i> – bez drenażu							
			Próbka	Parametry początkowe		Parametry końcowe	
Nr otw.	Gł. m	Rodzaj gruntu		wilgotność %	gęstość obj. g/cm ³	wilgotność %	gęstość obj. g/cm ³
55+080 5,5-6,		.6,0 Namuł gliniasty (Glina pylasta) / <i>Ił pylasty (orsiCl)</i>	Α	28,19	1,80	23,33	1,90
	5,5-6,0		В	35,79	1,89	27,94	2,01
			С	36,46	1,82	32,62	1,95

Sample testing details						
Standard	BS1377: part 8: 1990: Clauses 4,5,6,7 wg PN-EN ISO 17892-9:2018-05	Particle Density	2.63 g/cm3 (Assumed)			
Test Definition	Consolidated Undrained	Drainage location	Top & Side			

Specimen Details						
Specimen Reference	Specimen Reference A Initial Diameter 37.50 mm					
Initial Height 81.60 mm Membrane Thickness 0.30 mm						

SATURACJA – nasycenie próbki

Saturation Method	Back Pressure Increments	Cell Increments	50.7,50.1,49.8,kPa
Final Cell Pressure	150.6kPa	Back Increments	49.5,48.8,kPa
Final Pore Pressure	144.4kPa	Final B Value	1.079

ELE International

Cell Pressure	170.8kPa	Back Pressure	90.9kPa
Effective Pressure	79.9kPa	Final Pore Pressure Dissipation	99.20%
Final Pore Pressure	91.4 kPa		
Comments	W czasie konsolidacji o	dpływ wody następuje z góry	i dołu próbki

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions						
Rate of Axial Displacement0.0286mm/minCell Pressure170.8kPa						
Initial Pore Pressure	91.4kPa	Effective Stress at Start of Stage	79.4kPa			

Conditions at Failure						
Failure Criterion Maximum Deviator Stress						
Pore Pressure	113.7kPaMinor Effective Principal Stress56.7kPa					
Deviator Stress	162.5kPa	Major Effective Principal Stress	219.2kPa			
Axial Strain8.64%Effective Principal Stress Ratio3.867			3.867			
Deviator Stress Correction	Deviator Stress Correction 11.7kPa					

Zdjęcie – próbka A przed ścięciem

Zdjęcie – próbka A po ścięciu

Specimen Details						
Specimen Reference	В	Initial Diameter	37.88 mm			
Initial Height	82.30 mm	Membrane Thickness	0.30 mm			

Saturation Method	Back Pressure Increments	Cell Increments	51.3,48.9,50.5,50.0,kPa
Final Cell Pressure	201.6kPa	Back Increments	48.6,50.8,49.9,kPa
Final Pore Pressure	195.6kPa	Final B Value	1.080

Cell Pressure	300.4kPa	Back Pressure	140.2kPa
Effective Pressure	160.2kPa	Final Pore Pressure Dissipation	99.65%
Final Pore Pressure	140.8 kPa		
Comments	W czasie konsolidacji o	dpływ wody następuje z góry	i dołu próbki

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions						
Rate of Axial Displacement0.0286mm/minCell Pressure300.9kPa						
Initial Pore Pressure	140.8kPa	Effective Stress at Start of Stage	160.1kPa			

Conditions at Failure						
Failure Criterion Maximum Deviator Stress						
Pore Pressure	181.6kPa Minor Effective Principal Stress 119.0kPa					
Deviator Stress	321.2kPa	Major Effective Principal Stress	440.2kPa			
Axial Strain13.66%Effective Principal Stress Ratio3.700			3.700			
Deviator Stress Correction	12.3kPa					

Zdjęcie – próbka B przed ścięciem

Zdjęcie – próbka B po ścięciu

Specimen Details				
Specimen Reference	С	Initial Diameter	38.19 mm	
Initial Height	77.36 mm	Membrane Thickness	0.28 mm	

Saturation Method	Back Pressure Increments	Cell Increments	50.8,49.5,49.9,kPa
Final Cell Pressure	150.5kPa	Back Increments	90.5,kPa
Final Pore Pressure	148.9kPa	Final B Value	1.000

Cell Pressure	410.7kPa	Back Pressure	90.5kPa
Effective Pressure	320.2kPa	Final Pore Pressure Dissipation	100.21%
Final Pore Pressure	89.9 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions					
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	410.7kPa		
Initial Pore Pressure	90.2kPa	Effective Stress at Start of Stage	320.5kPa		

Conditions at Failure				
Failure CriterionMaximum Deviator Stress				
Pore Pressure	259.4kPa	Minor Effective Principal Stress	150.9kPa	
Deviator Stress	386.8kPa	Major Effective Principal Stress	537.7kPa	
Axial Strain	11.76%	Effective Principal Stress Ratio	3.563	
Deviator Stress Correction	11.9kPa			

Zdjęcie – próbka C przed ścięciem

Zdjęcie – próbka C po ścięciu

WARTOŚĆ KĄTA I KOHEZJI DLA MAX. DEWIATORA NAPRĘŻEŃ

SUMMARY

Specimen Details					
Specimon Poference	Effective Major Principal Stress				
Specifien Reference	(σ ₃ ')	(σ ₁ ')			
A	56.7kPa	219.2kPa			
В	119.0kPa	440.2kPa			
С	150.9kPa	537.7kPa			

WARTOŚĆ KĄTA I KOHEZJI – REZYDUALNE

Conditions at Failure						
Failure Criterion	Residual Deviator	r Stress				
	Spec	imen				
Parameters	Α	В	С			
Pore Pressure	98.4kPa	166.3kPa	253.3kPa			
Deviator Stress	152.3kPa	263.2kPa	299.6kPa			
Axial Strain	20.26%	20.28%	19.95%			
Deviator Stress Correction	13.0kPa	13.0kPa	12.7kPa			
Minor Effective Principal Stress	71.8kPa	134.5kPa	157.4kPa			
Major Effective Principal Stress	224.1kPa	397.7kPa	457.0kPa			
Effective Principal Stress Ratio	3.123	2.957	2.903			

SUMMARY

Specimen Details					
Specimon Beforence	Effective Minor Principal Stress	Effective Major Principal Stress			
Specimen Reference	(03')	(σ ₁ ')			
A	71.8kPa	224.1kPa			
В	134.5kPa	397.7kPa			
С	157.4kPa	457.0kPa			

ŚCIEŻKI NAPRĘŻEŃ

Specimen Reference	Α	В	С
Stress Path s' [kPa]	137,95	279,60	344,30
Stress Path t' [kPa]	81,25	160,60	193,40

STOSUNEK EFEKTYWNYCH NAPRĘŻEŃ GŁÓWNYCH vs ODKSZTAŁCENIE PIONOWE

zał. 6

Politechnika Krakowska im. Tadeusza Kościuszki Katedra Geotechniki i Wytrzymałości Materiałów L9 Wydział Inżynierii Lądowej

GiVM Z

Temat: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Metoda <i>CIU</i> – bez drenażu							
				Parametry początkowe		Parametry końcowe	
Nr otw.	Gł. m	Rodzaj gruntu	Próbka	wilgotność %	gęstość obj. g/cm ³	wilgotność %	gęstość obj. g/cm ³
			A	23,62	2,19	20,65	2,23
55+380	55+380 3,3-3,8 Pył / Pył ilasty (clSi)	В	24,36	2,14	21,38	2,18	
		С	22,97	2,28	20,00	2,31	

Sample testing details				
Standard	BS1377: part 8: 1990: Clauses 4,5,6,7 wg PN-EN ISO 17892-9:2018-05	Particle Density	2.6 g/cm3 (Assumed)	
Test Definition	Consolidated Undrained	Drainage location	Top & Side	

Specimen Details				
Specimen Reference A Initial Diameter 37.79 mm				
Initial Height	76.93 mm	Membrane Thickness	0.28 mm	

SATURACJA – nasycenie próbki

Saturation Method	Back Pressure Increments	Cell Increments	50.7,49.8,50.1,50.3,kPa
Final Cell Pressure	200.7kPa	Back Increments	90.5,59.0,kPa
Final Pore Pressure	194.2kPa	Final B Value	1.064

Cell Pressure	191.2kPa	Back Pressure	140.6kPa
Effective Pressure	50.6kPa	Final Pore Pressure Dissipation	103.01%
Final Pore Pressure	139.2 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions			
Rate of Axial Displacement	0.2 mm/min	Cell Pressure	190.3kPa
Initial Pore Pressure	140.8kPa	Effective Stress at Start of Stage	49.5kPa

Conditions at Failure			
Failure Criterion Maximum Deviator Stress			
Pore Pressure	107.8kPa	Minor Effective Principal Stress	82.2kPa
Deviator Stress	250.5kPa	Major Effective Principal Stress	332.7kPa
Axial Strain	10.74%	Effective Principal Stress Ratio	4.048
Deviator Stress Correction	11.9kPa		

Zdjęcie – próbka A przed ścięciem

Zdjęcie – próbka A po ścięciu

Specimen Details					
Specimen Reference	В	Initial Diameter	37.27 mm		
Initial Height 77.41 mm Membrane Thickness 0.28 mm					

Saturation Method	Back Pressure Increments	Cell Increments	50.9,49.8,49.4,50.6,kPa
Final Cell Pressure	200.5kPa	Back Increments	90.0,58.8,kPa
Final Pore Pressure	194.8kPa	Final B Value	1.083

Cell Pressure	240.8kPa	Back Pressure	140.4kPa
Effective Pressure	100.4kPa	Final Pore Pressure Dissipation	102.53%
Final Pore Pressure	138.0 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions			
Rate of Axial Displacement	0.2 mm/min	Cell Pressure	240.3kPa
Initial Pore Pressure	141.4kPa	Effective Stress at Start of Stage	98.9kPa

Conditions at Failure			
Failure Criterion Maximum Deviator Stress			
Pore Pressure	131.2kPa	Minor Effective Principal Stress	109.2kPa
Deviator Stress	322.4kPa	Major Effective Principal Stress	431.6kPa
Axial Strain	8.62%	Effective Principal Stress Ratio	3.952
Deviator Stress Correction	11.6kPa		

Zdjęcie – **próbka B przed** ścięciem

Zdjęcie – próbka B po ścięciu

Specimen Details				
Specimen Reference	С	Initial Diameter	36.78 mm	
Initial Height	72.44 mm	Membrane Thickness	0.28 mm	

Saturation Method	Back Pressure Increments	Cell Increments	50.4,49.7,50.2,kPa
Final Cell Pressure	149.9kPa	Back Increments	98.1,kPa
Final Pore Pressure	142.2kPa	Final B Value	1.020

Cell Pressure	290.8kPa	Back Pressure	90.8kPa
Effective Pressure	200.0kPa	Final Pore Pressure Dissipation	101.04%
Final Pore Pressure	88.8 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions			
Rate of Axial Displacement	0.2 mm/min	Cell Pressure	290.9kPa
Initial Pore Pressure	91.3kPa	Effective Stress at Start of Stage	199.6kPa

Conditions at Failure			
Failure Criterion	Maximum Deviator Stress		
Pore Pressure	185.2kPa	Minor Effective Principal Stress	155.4kPa
Deviator Stress	464.6kPa	Major Effective Principal Stress	620.0kPa
Axial Strain	10.68%	Effective Principal Stress Ratio	3.989
Deviator Stress Correction	11.9kPa		

Zdjęcie – próbka C przed ścięciem

Zdjęcie – próbka C po ścięciu

WARTOŚĆ KĄTA I KOHEZJI DLA MAX. DEWIATORA NAPRĘŻEŃ

SUMMARY

Specimen Details			
Specimen Reference	Effective Minor Principal Stress	Effective Major Principal Stress	
	(σ ₃ ')	(σ1')	
A	82.2kPa	332.7kPa	
В	109.2kPa	431.6kPa	
C	155.4kPa	620.0kPa	

WARTOŚĆ KĄTA I KOHEZJI – REZYDUALNE

Conditions at Failure			
Failure Criterion	Residual Deviator Stress		
Specimen			
Parameters	Α	В	С
Pore Pressure	90.0kPa	120.3kPa	180.9kPa
Deviator Stress	234.0kPa	268.4kPa	392.1kPa
Axial Strain	20.13%	20.05%	20.08%
Deviator Stress Correction	12.8kPa	12.9kPa	12.8kPa
Minor Effective Principal Stress	100.0kPa	120.5kPa	159.5kPa
Major Effective Principal Stress	334.0kPa	388.9kPa	551.5kPa
Effective Principal Stress Ratio	3.340	3.228	3.459

SUMMARY

Specimen Details			
Specimen Reference	Effective Minor Principal Stress	Effective Major Principal Stress	
	(σ₃')	(σ ₁ ')	
A	100.0kPa	334.0kPa	
В	120.5kPa	388.9kPa	
С	159.5kPa	551.5kPa	

ŚCIEŻKI NAPRĘŻEŃ

Specimen Reference	Α	В	С
Stress Path s' [kPa]	245,70	315,45	515,90
Stress Path t' [kPa]	169,10	206,25	339,40

SIECZNE MODUŁY ODKSZTAŁCENIA

STOSUNEK EFEKTYWNYCH NAPRĘŻEŃ GŁÓWNYCH vs ODKSZTAŁCENIE PIONOWE

zał. 7

Politechnika Krakowska DK im. Tadeusza Kościuszki Katedra Geotechniki i Wytrzymałości Materiałów L9 Wydział Inżynierii Lądowej GiWM.

Temat: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Metoda <i>CIU</i> – bez drenażu							
				Parametry początkowe		Parametry końcowe	
Nr otw.	Gł. m	Rodzaj gruntu	Próbka	wilgotność %	gęstość obj. g/cm ³	wilgotność %	gęstość obj. g/cm ³
55+380 4,3-4		4,8 Pył / Pył ilasty (clSi)	Α	22,51	2,21	19,69	2,24
	4,3-4,8		В	22,43	2,16	18,78	2,20
			С	22,21	2,18	18,32	2,22

Sample testing details						
Standard	BS1377: part 8: 1990: Clauses 4,5,6,7 wg PN-EN ISO 17892-9:2018-05	Particle Density	2.67 g/cm3 (Assumed)			
Test Definition	Consolidated Undrained	Drainage location	Top & Side			

Specimen Details						
Specimen Reference	Specimen Reference A Initial Diameter 36.84 mm					
Initial Height 77.66 mm Membrane Thickness 0.28 mm						

SATURACJA – nasycenie próbki

Saturation Method	Back Pressure Increments	Cell Increments	50.6,50.0,49.7,kPa
Final Cell Pressure	151.9kPa	Back Increments	98.5,kPa
Final Pore Pressure	142.5kPa	Final B Value	1.023

Cell Pressure	140.6kPa	Back Pressure	90.7kPa
Effective Pressure	49.9kPa	Final Pore Pressure Dissipation	101.52%
Final Pore Pressure	90.0 kPa		
Comments W czasie konsolidacji odpływ wody następuje z góry i dołu prół			i dołu próbki

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions					
Rate of Axial Displacement0.0286mm/minCell Pressure140.2kPa					
Initial Pore Pressure	91.1kPa	Effective Stress at Start of Stage	49.1kPa		

Conditions at Failure						
Failure Criterion Maximum Deviator Stress						
Pore Pressure	19.8kPaMinor Effective Principal Stress120.5kPa					
Deviator Stress	346.3kPa	Major Effective Principal Stress	466.8kPa			
Axial Strain	rain 16.97% Effective Principal Stress Ratio 3.874					
Deviator Stress Correction	Deviator Stress Correction 12.5kPa					

Zdjęcie – próbka A przed ścięciem

Zdjęcie – próbka A po ścięciu

Specimen Details						
Specimen Reference	В	Initial Diameter	37.75 mm			
Initial Height	78.33 mm	Membrane Thickness	0.28 mm			

Saturation Method	Back Pressure Increments	Cell Increments	50.5,50.2,49.1,kPa
Final Cell Pressure	150.2kPa	Back Increments	97.7,kPa
Final Pore Pressure	145.6kPa	Final B Value	1.097

Cell Pressure	190.2kPa	Back Pressure	90.5kPa
Effective Pressure	99.7kPa	Final Pore Pressure Dissipation	100.69%
Final Pore Pressure	89.9 kPa		
Comments	W czasie konsolidacji o	dpływ wody następuje z góry	i dołu próbki

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Client	55-380(43-48)CU	Lab Ref	
Project	55-380(43-48)CU	Job	55-380(43-
			48)CU
Borehole		Sample	55-380(43-
			48)CU

Shear Conditions						
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	190.2kPa			
Initial Pore Pressure	90.2kPa	Effective Stress at Start of Stage	100.0kPa			

Conditions at Failure						
Failure Criterion Maximum Deviator Stress						
Pore Pressure	35.2kPa	35.2kPa Minor Effective Principal Stress 155.0kPa				
Deviator Stress	423.5kPa	Major Effective Principal Stress	578.5kPa			
Axial Strain	16.10%	Effective Principal Stress Ratio	3.732			
Deviator Stress Correction	12.4kPa					

Zdjęcie – próbka B przed ścięciem

Zdjęcie – próbka B po ścięciu

Specimen Details				
Specimen Reference	С	Initial Diameter	37.32 mm	
Initial Height	80.11 mm	Membrane Thickness	0.28 mm	

Saturation Method	Back Pressure Increments	Cell Increments	50.5,49.5,50.8,kPa
Final Cell Pressure	151.8kPa	Back Increments	90.5,kPa
Final Pore Pressure	150.5kPa	Final B Value	0.987

Cell Pressure	290.9kPa	Back Pressure	90.5kPa
Effective Pressure	200.4kPa	Final Pore Pressure Dissipation	100.79%
Final Pore Pressure	89.0 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions				
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	290.9kPa	
Initial Pore Pressure	90.9kPa	Effective Stress at Start of Stage	200.0kPa	

Conditions at Failure				
Failure Criterion Maximum Deviator Stress				
Pore Pressure	71.0kPa	Minor Effective Principal Stress	219.2kPa	
Deviator Stress	622.4kPa	Major Effective Principal Stress	841.6kPa	
Axial Strain	13.23%	Effective Principal Stress Ratio	3.839	
Deviator Stress Correction	12.1kPa			

Zdjęcie – próbka C przed ścięciem

Zdjęcie – próbka C po ścięciu

WARTOŚĆ KĄTA I KOHEZJI DLA MAX. DEWIATORA NAPRĘŻEŃ

SUMMARY

Specimen Details					
Specimon Beference	Effective Minor Principal Stress	Effective Major Principal Stress			
Specimen Reference	(σ ₃ ')	(σ1')			
A	120.5kPa	466.8kPa			
В	155.0kPa	578.5kPa			
С	219.2kPa	841.6kPa			

WARTOŚĆ KĄTA I KOHEZJI – REZYDUALNE

Conditions at Failure					
Failure Criterion	Residual Deviator Stress				
	Specime	en			
Parameters	Α	В	С		
Pore Pressure	13.4kPa	24.5kPa	38.8kPa		
Deviator Stress	332.1kPa	409.9kPa	571.0kPa		
Axial Strain	20.00%	20.26%	20.40%		
Deviator Stress Correction	12.9kPa	12.8kPa	12.9kPa		
Minor Effective Principal Stress	126.8kPa	165.7kPa	251.4kPa		
Major Effective Principal Stress	458.9kPa	575.6kPa	822.4kPa		
Effective Principal Stress Ratio	3.620	3.474	3.271		

SUMMARY

Specimen Details					
Specimon Beforence	Effective Minor Principal Stress	Effective Major Principal Stress			
Specimen Reference	(03')	(σ ₁ ')			
A	126.8kPa	458.9kPa			
В	165.7kPa	575.6kPa			
С	251.4kPa	822.4kPa			

ŚCIEŻKI NAPRĘŻEŃ

Specimen Reference	Α	В	С
Stress Path s' [kPa]	293,65	366,75	530,4
Stress Path t' [kPa]	173,15	211,75	311,50

SIECZNE MODUŁY ODKSZTAŁCENIA

STOSUNEK EFEKTYWNYCH NAPRĘŻEŃ GŁÓWNYCH vs ODKSZTAŁCENIE PIONOWE

zał. 8

Politechnika Krakowska DK im. Tadeusza Kościuszki Katedra Geotechniki i Wytrzymałości Materiałów L9 Wydział Inżynierii Lądowej

GiWM.

Temat: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Metoda <i>CIU</i> – bez drenażu							
				Parametry początkowe		Parametry końcowe	
Nr otw.	Gł. m	Rodzaj gruntu	Próbka	wilgotność %	gęstość obj. g/cm ³	wilgotność %	gęstość obj. g/cm ³
	Glina pylasta	Α	34,55	2,03	28,28	2,12	
55.560		В	30,12	1,98	26,59	2,10	
55+560 5,0-5,5 (prochniczna) / <i>It pylasty (orsiCl)</i>	С	32,85	2,03	22,23	2,16		
	D	28,51	2,02	20,85	2,14		

Sample testing details					
Standard	BS1377: part 8: 1990: Clauses 4,5,6,7 wg PN-EN ISO 17892-9:2018-05	Particle Density	2.67 g/cm3 (Assumed)		
Test Definition	Consolidated Undrained	Drainage location	Top & Side		

Specimen Details							
Specimen Reference A Initial Diameter 37.01 mm							
Initial Height	Initial Height 78.38 mm Membrane Thickness 0.28 mm						

SATURACJA – nasycenie próbki

Saturation Method	Back Pressure Increments	Cell Increments	50.5,50.2,49.8,kPa
Final Cell Pressure	150.9kPa	Back Increments	89.9,kPa
Final Pore Pressure	152.4kPa	Final B Value	1.005

KONSOLIDACJA

Cell Pressure	140.4kPa	Back Pressure	90.5kPa
Effective Pressure	49.9kPa	Final Pore Pressure	102.54%
		Dissipation	
Final Pore Pressure	89.2 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

ELE International

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions				
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	140.1kPa	
Initial Pore Pressure	91.2kPa	Effective Stress at Start of Stage	48.9kPa	

Conditions at Failure				
Failure Criterion Maximum Deviator Stress				
Pore Pressure	83.4kPa Minor Effective Principal Stress 56.7kPa			
Deviator Stress	212.8kPa	Major Effective Principal Stress	269.5kPa	
Axial Strain	10.76%Effective Principal Stress Ratio4.753			
Deviator Stress Correction	11.9kPa			

Zdjęcie – **próbka A przed** ścięciem

Zdjęcie – próbka A po ścięciu

Specimen Details					
Specimen Reference	В	Initial Diameter	37.91 mm		
Initial Height 78.32 mm Membrane Thickness 0.28 mm					

Saturation Method	Back Pressure Increments	Cell Increments	50.0,50.6,50.8,kPa
Final Cell Pressure	150.1kPa	Back Increments	90.8,kPa
Final Pore Pressure	148.4kPa	Final B Value	0.988

Cell Pressure	191.6kPa	Back Pressure	90.5kPa
Effective Pressure	101.1kPa	Final Pore Pressure Dissipation	101.39%
Final Pore Pressure	89.2 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions				
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	190.3kPa	
Initial Pore Pressure	95.8kPa	Effective Stress at Start of Stage	94.4kPa	

Conditions at Failure				
Failure Criterion Maximum Deviator Stress				
Pore Pressure	102.4kPaMinor Effective Principal Stress87.9kPa			
Deviator Stress	292.0kPa	Major Effective Principal Stress	379.9kPa	
Axial Strain	14.19%	Effective Principal Stress Ratio	4.322	
Deviator Stress Correction	12.2kPa			

Zdjęcie – próbka B przed ścięciem

Zdjęcie – próbka B po ścięciu

Specimen Details						
Specimen Reference C Initial Diameter 37.63 mm						
Initial Height 78.98 mm Membrane Thickness 0.28 mm						

Saturation Method	Back Pressure Increments	Cell Increments	50.7,49.8,50.1,kPa
Final Cell Pressure	150.9kPa	Back Increments	100.0,kPa
Final Pore Pressure	142.8kPa	Final B Value	1.041

Cell Pressure	290.7kPa	Back Pressure	90.5kPa
Effective Pressure	200.2kPa	Final Pore Pressure Dissipation	101.20%
Final Pore Pressure	88.2 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions			
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	290.1kPa
Initial Pore Pressure	88.2kPa	Effective Stress at Start of Stage	201.9kPa

Conditions at Failure			
Failure Criterion	Maximum Deviator Stress		
Pore Pressure	167.8kPa	Minor Effective Principal Stress	122.3kPa
Deviator Stress	392.1kPa	Major Effective Principal Stress	514.4kPa
Axial Strain	16.24%	Effective Principal Stress Ratio	4.207
Deviator Stress Correction	12.4kPa		

Zdjęcie – próbka C przed ścięciem

Zdjęcie – próbka C po ścięciu

Specimen Details			
Specimen Reference	D	Initial Diameter	38.42 mm
Initial Height	78.68 mm	Membrane Thickness	0.38 mm

Saturation Method	Back Pressure Increments	Cell Increments	50.2,50.5,kPa
Final Cell Pressure	100.7kPa	Back Increments	91.6,kPa
Final Pore Pressure	101.3kPa	Final B Value	1.013

Cell Pressure	493.1kPa	Back Pressure	91.2kPa
Effective Pressure	401.9kPa	Final Pore Pressure Dissipation	100.49%
Final Pore Pressure	89.2 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

ELE International

Shear Conditions			
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	490.2kPa
Initial Pore Pressure	95.5kPa	Effective Stress at Start of Stage	394.7kPa

Conditions at Failure			
Failure Criterion	ailure Criterion Maximum Deviator Stress		
Pore Pressure	287.9kPa	Minor Effective Principal Stress	202.3kPa
Deviator Stress	660.3kPa	Major Effective Principal Stress	862.6kPa
Axial Strain	13.37%	Effective Principal Stress Ratio	4.264
Deviator Stress Correction	12.7kPa		

Zdjęcie – **próbka D przed** ścięciem

Zdjęcie – próbka D po ścięciu

WARTOŚĆ KĄTA I KOHEZJI DLA MAX. DEWIATORA NAPRĘŻEŃ

SUMMARY

Specimen Details			
Specimen Reference	Effective Minor Principal Stress (σ_3)	Effective Major Principal Stress (σ ₁ ')	
A	56.7kPa	269.5kPa	
В	87.9kPa	379.9kPa	
С	122.3kPa	514.4kPa	
D	202.3kPa	862.6kPa	

WARTOŚĆ KĄTA I KOHEZJI – REZYDUALNE

Conditions at Failure					
Failure Criterion	Residual Deviat	or Stress			
	Spe	ecimen			
Parameters	Α	В	С	D	
Pore Pressure	78.6kPa	94.4kPa	157.8kPa	267.0kPa	
Deviator Stress	183.5kPa	255.4kPa	380.6kPa	619.0kPa	
Axial Strain	19.98%	20.40%	20.36%	20.25%	
Deviator Stress Correction	12.9kPa	12.8kPa	12.8kPa	13.7kPa	
Minor Effective Principal Stress	61.5kPa	96.0kPa	132.3kPa	223.1kPa	
Major Effective Principal Stress	245.0kPa	351.3kPa	512.9kPa	842.1kPa	
Effective Principal Stress Ratio	3.982	3.661	3.877	3.774	

SUMMARY

Specimen Details					
Specimon Beforence	Effective Minor Principal Stress	Effective Major Principal Stress			
Specimen Reference	(03')	(ơ ₁ ')			
A	61.5kPa	245.0kPa			
В	96.0kPa	351.3kPa			
С	132.3kPa	512.9kPa			
D	223.1kPa	842.1kPa			

ŚCIEŻKI NAPRĘŻEŃ

Specimen Reference	Α	В	С	D
Stress Path s' [kPa]	163,10	233,90	318,35	532,45
Stress Path t' [kPa]	106,40	146,00	196,05	330,15

Consolidated Undrained Triaxial Compression Test with measurement of Pore Pressure

SIECZNE MODUŁY ODKSZTAŁCENIA

STOSUNEK EFEKTYWNYCH NAPRĘŻEŃ GŁÓWNYCH vs ODKSZTAŁCENIE PIONOWE

zał. 9

Politechnika Krakowska DK im. Tadeusza Kościuszki Katedra Geotechniki i Wytrzymałości Materiałów L9 Wydział Inżynierii Lądowej GiWM 25

Temat: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100-59+000

Metoda <i>CIU</i> – bez drenażu							
				Parametry p	oczątkowe	Parametry	końcowe
Nr otw.	Gł. m	Rodzaj gruntu	Próbka	wilgotność %	gęstość obj. g/cm ³	wilgotność %	gęstość obj. g/cm ³
		Namuk aliniasty	Α	31,15	1,96	28,31	2,06
55+560	4,9-5,4	(Glina pylasta) /	В	31,66	1,86	29,67	1,95
		It pylasty (orsiCl)	С	31,19	1,93	25,16	2,04

Sample testing details						
Standard	BS1377: part 8: 1990: Clauses 4,5,6,7 wg PN-EN ISO 17892-9:2018-05	Particle Density	2.63 g/cm3 (Assumed)			
Test Definition	Consolidated Undrained	Drainage location	Top & Side			

Specimen Details						
Specimen Reference	А	Initial Diameter	37.46 mm			
Initial Height	Initial Height 79.05 mm Membrane Thickness 0.28 mm					

SATURACJA – nasycenie próbki

Saturation Method	Back Pressure Increments	Cell Increments	50.0,50.6,49.7,kPa
Final Cell Pressure	150.5kPa	Back Increments	97.7,kPa
Final Pore Pressure	144.5kPa	Final B Value	1.087

KONSOLIDACJA

Cell Pressure	170.5kPa	Back Pressure	90.3kPa
Effective Pressure	80.3kPa	Final Pore Pressure Dissipation	102.57%
Final Pore Pressure	88.4 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

NAPRĘŻENIE ŚCINAJĄCE – ODKSZTAŁCENIE PIONOWE

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions						
Rate of Axial Displacement	0.0286mm/min	Cell Pressure	170.5kPa			
Initial Pore Pressure	90.7kPa	Effective Stress at Start of Stage	80.2kPa			

Conditions at Failure				
Failure Criterion Maximum Deviator Stress				
Pore Pressure	105.6kPa	Minor Effective Principal Stress	64.8kPa	
Deviator Stress	183.2kPa	Major Effective Principal Stress	248.0kPa	
Axial Strain	11.29%	Effective Principal Stress Ratio	3.829	
Deviator Stress Correction	12.0kPa			

Zdjęcie – próbka A przed ścięciem

Zdjęcie – próbka A po ścięciu

Specimen Details					
Specimen Reference	В	Initial Diameter	37.64 mm		
Initial Height	79.12 mm	Membrane Thickness	0.28 mm		

Saturation Method	Back Pressure Increments	Cell Increments	51.1,49.7,49.4,kPa
Final Cell Pressure	150.2kPa	Back Increments	49.2,49.7,kPa
Final Pore Pressure	143.7kPa	Final B Value	1.072

KONSOLIDACJA

Cell Pressure	251.7kPa	Back Pressure	90.9kPa
Effective Pressure	160.8kPa	Final Pore Pressure Dissipation	100.30%
Final Pore Pressure	90.4 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

NAPRĘŻENIE ŚCINAJĄCE – ODKSZTAŁCENIE PIONOWE

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions					
Rate of Axial Displacement0.0286mm/minCell Pressure250.4kPa					
Initial Pore Pressure 90.0kPa Effective Stress at Start of Stage 160.4kPa					

Conditions at Failure					
Failure Criterion Maximum Deviator Stress					
Pore Pressure	138.5kPa	138.5kPaMinor Effective Principal Stress111.9kPa			
Deviator Stress	289.5kPa	Major Effective Principal Stress	401.3kPa		
Axial Strain	12.66% Effective Principal Stress Ratio 3.588				
Deviator Stress Correction	Deviator Stress Correction 12.1kPa				

Zdjęcie – próbka B przed ścięciem

Zdjęcie – próbka B po ścięciu

Specimen Details					
Specimen ReferenceCInitial Diameter37.93 mm					
Initial Height 79.76 mm Membrane Thickness 0.28 mm					

Saturation Method	Back Pressure Increments	Cell Increments	50.7,50.2,kPa
Final Cell Pressure	101.2kPa	Back Increments	90.8,kPa
Final Pore Pressure	101.4kPa	Final B Value	1.004

KONSOLIDACJA

Cell Pressure	410.7kPa	Back Pressure	90.8kPa
Effective Pressure	319.9kPa	Final Pore Pressure Dissipation	100.36%
Final Pore Pressure	89.7 kPa		
Comments	W czasie konsolidacji odpływ wody następuje z góry i dołu próbki		

NAPRĘŻENIE ŚCINAJĄCE – ODKSZTAŁCENIE PIONOWE

CIŚNIENIE POROWE – ODKSZTAŁCENIE PIONOWE

Shear Conditions				
Rate of Axial Displacement0.0286mm/minCell Pressure410.4kPa				
Initial Pore Pressure	91.0kPa	Effective Stress at Start of Stage	319.4kPa	

Conditions at Failure					
Failure CriterionMaximum Deviator Stress					
Pore Pressure	240.5kPa	240.5kPa Minor Effective Principal Stress 169.9kPa			
Deviator Stress	423.2kPa	Major Effective Principal Stress	593.1kPa		
Axial Strain	12.50%	Effective Principal Stress Ratio	3.491		
Deviator Stress Correction	Deviator Stress Correction 12.0kPa				

Zdjęcie – **próbka C przed** ścięciem

Zdjęcie – próbka C po ścięciu

WARTOŚĆ KĄTA I KOHEZJI DLA MAX. DEWIATORA NAPRĘŻEŃ

SUMMARY

Specimen Details			
Specimen Beference	Effective Minor Principal Stress	Effective Major Principal Stress	
Specimen neierence	(σ₃')	(σ1')	
A	64.8kPa	248.0kPa	
В	111.9kPa	401.3kPa	
С	169.9kPa	593.1kPa	

WARTOŚĆ KĄTA I KOHEZJI – REZYDUALNE

Conditions at Failure					
Failure Criterion	Failure Criterion Residual Deviator Stress				
	Spec	cimen			
Parameters	Α	В	С		
Pore Pressure	92.4kPa	125.3kPa	210.8kPa		
Deviator Stress	134.3kPa	233.2kPa	328.8kPa		
Axial Strain	19.94%	19.99%	20.16%		
Deviator Stress Correction	12.8kPa	12.8kPa	12.8kPa		
Minor Effective Principal Stress	77.8kPa	124.9kPa	199.6kPa		
Major Effective Principal Stress	212.1kPa	358.1kPa	528.4kPa		
Effective Principal Stress Ratio	2.727	2.868	2.647		

SUMMARY

Specimen Details			
Specimon Beference	Effective Minor Principal Stress	Effective Major Principal Stress	
Specimen Reference	(σ₃')	(σ ₁ ')	
A	77.8kPa	212.1kPa	
В	124.9kPa	358.1kPa	
C	199.6kPa	528.4kPa	

ŚCIEŻKI NAPRĘŻEŃ

Specimen Reference	Α	В	С
Stress Path s' [kPa]	156,40	256,60	381,65
Stress Path t' [kPa]	91,60	144,70	211,75

SIECZNE MODUŁY ODKSZTAŁCENIA

STOSUNEK EFEKTYWNYCH NAPRĘŻEŃ GŁÓWNYCH vs ODKSZTAŁCENIE PIONOWE

Zał. 10

SPRAWOZDANIE Z WYKONANIA OZNACZENIA ŚCIŚLIWOŚCI GRUNTU W EDOMETRZE

wg PN-EN ISO 17892-5:2017-06

Temat*: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100 – 59+000

Numer otworu*: 55+080

Głębokość poboru: 2,8-3,3

Rodzaj gruntu: Pył

Rodzaj gruntu makroskopowo (ISO): Pył ilasty (clSi)

Badanie wykonał: dr inż. Bartłomiej Olek, mgr inż. Marek Wawok

Sprawozdanie autoryzował: dr inż. Bartłomiej Olek

* Dane przekazane przez Klienta.

Metoda badania: oznaczenie charakterystyk ściśliwości i konsolidacji na podstawie badania edometrycznego

Symbole użyte w opracowaniu:

- $c_{\alpha(\epsilon)}$ współczynnik ściśliwości wtórnej od ϵ ($c_{\alpha(\epsilon)}$ = - $\Delta \epsilon / \Delta \log t$)
- $c_{\alpha(e)}$ współczynnik ściśliwości wtórnej od e ($c_{\alpha(e)}$ = - $\Delta e/\Delta logt$)
- c_v współczynnik konsolidacji
- C_{c} wskaźnik ściśliwości (C_{c} = - $\Delta e/\Delta \log \sigma'_{v}$)
- $C_s wskaźnik odprężenia (C_s = \Delta e/-\Delta \log \sigma'_v)$
- \mathbf{C}_{r} wskaźnik ściśliwości wtórnej (C_r = $\Delta e/-\Delta \log \sigma_{v}$)
- $\mathbf{e}_{\mathbf{0}}$ początkowy wskaźnik porowatości próbki na początku badania
- ef wskaźnik porowatości próbki na końcu przyrostu obciążenia
- Eoed moduł edometryczny
- H_0 początkowa wysokość próbki na początku badania
- \mathbf{H}_{f} wysokość próbki na końcu przyrostu obciążenia
- $\mathbf{k_v}$ współczynnik przepuszczalności (k_v = c_v*_{Yw}/m_v)
- $\mathbf{m_v}$ moduł ściśliwości objętościowej
- Sr stopień nasycenia
- $\epsilon_{v,\text{f}}$ odkształcenie pionowe na końcu przyrostu obciążenia
- σ'_v pionowe naprężenie efektywne
- σ'_p naprężenie prekonsolidacyjne

Rodzaj gruntu										Stan gruntu makroskopowo		ρ _s * (Mg/m³)		S _r (%)				
Pył										pl		2.67		100				
Orientacja p	Typ próbk	i Spos	sób przyg ęcie z prół	otowania by o niena	ruszonej :	lo bad struktu	ań rze	Stosunek ramienia edom. Śre			dnica pierścienia D (mm)							
poziom	а	A1	1	wyci	śniętej z p	próbnika			1			60						
	•																	
Parametry początkowe										Parametry końcowe								
Wilgotność naturalna w _n (%)	Wysoko: próbki ł (mm)	ść I₀ Gęst ρ(ość obj. g/cm³)	bj. ³) Gęstość obj. szkieletu ρ _d (g/cm ³)		Wilgotność w (%)		Wyso prób (m	kość Gęstość ki H _k ρ (g/cn m)		obj. Gęstość obj. szkieletu ³) ρ _d (g/cm ³)							
23.22	19.72		2.13	1.	73	19.65		17.	.81	1 2.28		1.91						
Charakterystyki konsolidacyjne																		
Etap	Δσ' _v	H _f	e _f **	ε _{v,f}	m _v	E_{oed}	c	v	C _{α(ε)}	$c_{\alpha(e)}$	Cc	Cs	Cr	k _v				
	(kPa)	(mm)	(-)	(%)	(MPa ⁻¹)	(kPa)	(m	²/s)	(-)	(-)	(-)	(-)	(-)	(m/s)				
Obciążenie pierwotne	0	19.720	0.543	0	-	-		-	-	-		-	-	-				
	0-12,5	19.02	0.489	3.5243	2.819	355	3.77	E-07	1.97E-04	3.04E-04				5.29E-06				
	12,5-25	18.862	0.476	4.3509	0.685	1512	3.99	E-07	2.45E-04	3.79E-04				3.16E-06				
	25-50	18.663	0.460	5.36	0.422	2477	5.73	E-07	2.48E-04	3.82E-04				9.24E-06				
	50-100	18.41	0.441	6.6075	0.264	4008	7.36	E-07	1.67E-04	2.57E-04				2.08E-05				
	100-200) 18.109	0.417	8.1694	0.167	6403	7.91	E-07	1.69E-04	2.61E-04	-			2.63E-05				
Odciążenie	200-100) 18.130	0.419	8.0629	-	8600		-	-	-		0.011	-	-				
	100-50	18.178	0.422	7.8195	-	18935		-	-	-				-				
	50-25	18.23 ²	0.427	7.5507	-	86333		-	-	-				-				
Obciążenie wtórne	25-50	18.210	0.425	7.6572	0.046	24650	7.03	E-07	4.27E-05	6.59E-05	0.077		0.011	1.50E-04				
	50-100	18.170	0.422	7.86	0.044	27775	6.03	E-07	6.41E-05	9.89E-05				1.35E-04				
	100-200) 18.099	0.416	8.2201	0.039	13694	4.97	E-07	1.50E-04	2.31E-04				1.25E-04				
				A A				_										

<u>Uwagi:</u>

Ob. pierw.

200-400

17.811

0.394

9.6805

0.080

4132

3.66E-07

1.05E-04 1.63E-04

Współczynnik konsolidacji c $_v$ został wyznaczony metodą Casagrande (logarytmu czasu).

4.52E-05

Wykonano wg: PN-EN ISO 17892-5:2017-06 Rozpoznanie i badania geotechniczne. Badania laboratoryjne gruntów – Badanie edometryczne gruntów

Sprawozdanie może być powielane wyłącznie w całości i tylko za zgodą laboratorium.

Koniec sprawozdania.

Zał. 11

SPRAWOZDANIE Z WYKONANIA OZNACZENIA ŚCIŚLIWOŚCI GRUNTU W EDOMETRZE

wg PN-EN ISO 17892-5:2017-06

Temat*: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100 – 59+000

Numer otworu*: 55+080

Głębokość poboru: 5,5-6,0

Rodzaj gruntu: Namuł gliniasty (Glina pylasta)

Rodzaj gruntu makroskopowo (ISO): Ił pylasty (orsiCl)

Badanie wykonał: dr inż. Bartłomiej Olek, mgr inż. Marek Wawok

Sprawozdanie autoryzował: dr inż. Bartłomiej Olek

* Dane przekazane przez Klienta.

Metoda badania: oznaczenie charakterystyk ściśliwości i konsolidacji na podstawie badania edometrycznego

Symbole użyte w opracowaniu:

- $\mathbf{c}_{\alpha(\epsilon)}$ współczynnik ściśliwości wtórnej od ϵ ($\mathbf{c}_{\alpha(\epsilon)}$ = - $\Delta \epsilon / \Delta \log t$)
- $c_{\alpha(e)}$ współczynnik ściśliwości wtórnej od e ($c_{\alpha(e)}$ = - $\Delta e/\Delta logt$)
- c_v współczynnik konsolidacji
- C_{c} wskaźnik ściśliwości (C_{c} = - $\Delta e/\Delta \log \sigma'_{v}$)
- $C_s wskaźnik odprężenia (C_s = \Delta e/-\Delta \log \sigma'_v)$
- \mathbf{C}_{r} wskaźnik ściśliwości wtórnej (C_r = $\Delta e/-\Delta \log \sigma'_{v}$)
- $\mathbf{e_0}$ początkowy wskaźnik porowatości próbki na początku badania
- ef wskaźnik porowatości próbki na końcu przyrostu obciążenia
- Eoed moduł edometryczny
- H_0 początkowa wysokość próbki na początku badania
- $\mathbf{H}_{\rm f}$ wysokość próbki na końcu przyrostu obciążenia
- $\mathbf{k_v}$ współczynnik przepuszczalności (k_v = c_v*_{Yw}/m_v)
- $\mathbf{m_v}$ moduł ściśliwości objętościowej
- Sr stopień nasycenia
- $\epsilon_{v,\text{f}}$ odkształcenie pionowe na końcu przyrostu obciążenia
- σ'_v pionowe naprężenie efektywne
- σ'_p naprężenie prekonsolidacyjne

Rodzaj gruntu										Stan gruntu makroskopowo		ρ _s * (Mg/m³)		S _r (%)				
Namuł gliniasty (Glina pylasta)										pl		2.63		100				
Orientacja p	Typ próbki	Spos	ób przyg	otowania	próbki d	lo bad	ań	Stosunek ramienia edom. Śre			dnica pierścienia D (mm)							
			vvycię	cie z próby o nienaruszonej strukturze				rze										
poziom	а	A1		wyci	siliętej z p	Si OSTIII (a			1		60							
Parametry początkowe										Parametry końcowe								
Wilgotność naturalna w _n (%)	Wysokos próbki H (mm)	^{ść} Gęsto Ι ₀ ρ (g/	ść obj. 'cm ³)	Gęstość obj. szkieletu ρ _d (g/cm ³)		Wilgotność w (%)		Wyso próbl (m	kość ki H _k m)	Gęstość obj. ρ (g/cm³)		Gęstość obj. szkieletu ρ _d (g/cm³)						
33.76	19.61	1.	86	1.	39	28.33		16.	.55 2.09		1.63							
Charakterystyki konsolidacyjne																		
Etap	Δσ' _v	H _f	e _f **	ε _{v,f}	m _v	E _{oed}	C	v	C _{α(ε)}	c _{α(e)}	Cc	Cs	C _r	k _v				
	(kPa)	(mm)	(-)	(%)	(MPa⁻¹)	(kPa)	(m	²/s)	(-)	(-)	(-)	(-)	(-)	(m/s)				
Obciążenie pierwotne	0	19.610	0.887	0	-	-		-	-	-		-	-	-				
	0-12,5	18.789	0.808	4.1866	3.349	299	8.64	E-07	3.17E-04	5.99E-04				5.29E-06				
	12,5-25	18.580	0.788	5.2524	0.890	1173	2.63	E-07	2.90E-04	5.47E-04				3.16E-06				
	25-50	18,290	0.760	6,7313	0.624	1691	4.21	E-07	2.93E-04	5.53E-04				9.24E-06				
	50-100	17.902	0.723	8,7098	0.424	2527	9.16	E-07	2.98E-04	5.62E-04	-			2.08E-05				
	100-200	17.288	0.664	11.841	0.343	3194	2.53	E-07	3.48E-04	6.56E-04				2.63E-05				
Odciążenie	200-100	17.339	0.669	11.581	-	4098		-	-	-		0.027	-	-				
	100-50	17.433	0.678	11.101	-	9273		-	-	-				-				
	50-25	17.540	0.688	10.556	-	33998		-	-	-				-				
Obciążenie wtórne	25-50	17.490	0.683	10.811	0.114	10108	6.36	E-07	8.87E-05	1.67E-04				5.47E-05				
	50-100	17.393	0.674	11.305	0.111	11335	6.46E-07		5.46E-05	1.03E-04			0.034	5.72E-05				
	100-200	17.220	0.657	12.188	0.099	5854	5.14	E-07	8.23E-05	1.55E-04	0.000	-		5.07E-05				
Ob. pierw.	200-400	16.550	0.593	15.604	0.195	2563	6.33	E-07	1.45E-03	2.73E-03	0.236		-	3.19E-05				

<u>Uwagi:</u>

Współczynnik konsolidacji c $_v$ został wyznaczony metodą Casagrande (logarytmu czasu).

Politechnika Krakowska Wydział Inżynierii Lądowej ul. Warszawska 24 31-155 Kraków

Laboratorium Badawcze Katedry Geotechniki i Wytrzymałości Materiałów

Politechnika Krakowska Wydział Inżynierii Lądowej ul. Warszawska 24 31-155 Kraków

Stan gruntu ρs Rodzaj gruntu S (%) e₀ (-) makroskopowo (Mg/m³) Namuł gliniasty (Glina pylasta) 2.63 0.887 100 pl Sposób przygotowania próbki do badań Średnica pierścienia D Stosunek ramienia Orientacja próbki Typ próbki edom. (mm) Wycięcie z próby o nienaruszonej strukturze wyciśniętej z próbnika A1 1 60 pozioma Wyznaczenie naprężenia prekonsolidacyjnego Wykres podwójnie logarytmiczny zależności między objętością właściwą a naprężeniem efektywnym 0.620 0.600 0.580 0.560 Inv = In(1+e) (-) 0.540 0 0.520 0.500 0.480 0.460 0.440 10 **σ**'_p 100 1000 10000 1 Pionowe naprężenie efektywne σ', (kPa) 108 kPa Naprężenie prekonsolidacyjne σ'_p Uwagi: Naprężenie prekonsolidacyjne o'_p zostało wyznaczone metodą bi-logarytmiczną (Onitsuka, K., Hong, Z., Hara, Y. & Yoshitake, S. (1995). Interpretation of oedometer test data for natural clays. Soils Found. 35(3), 61–70. https://doi.org/10.3208/sandf.35.61)

Sprawozdanie może być powielane wyłącznie w całości i tylko za zgodą laboratorium.

Zał. 12

SPRAWOZDANIE Z WYKONANIA OZNACZENIA ŚCIŚLIWOŚCI **GRUNTU W EDOMETRZE**

wg PN-EN ISO 17892-5:2017-06

Temat*: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100 – 59+000

Numer otworu*: 55+380

Głębokość poboru: 3,3-3,8

Rodzaj gruntu: Pył

Rodzaj gruntu makroskopowo (ISO): Pył ilasty (clSi)

Badanie wykonał: dr inż. Bartłomiej Olek, mgr inż. Marek Wawok

Sprawozdanie autoryzował: dr inż. Bartłomiej Olek

* Dane przekazane przez Klienta.

Metoda badania: oznaczenie charakterystyk ściśliwości i konsolidacji na podstawie badania edometrycznego

Symbole użyte w opracowaniu:

- $\mathbf{c}_{\alpha(\epsilon)}$ współczynnik ściśliwości wtórnej od ϵ ($\mathbf{c}_{\alpha(\epsilon)}$ = - $\Delta\epsilon/\Delta \log t$)
- $c_{\alpha(e)}$ współczynnik ściśliwości wtórnej od e ($c_{\alpha(e)}$ = - $\Delta e/\Delta logt$)
- cv współczynnik konsolidacji
- **C**_c wskaźnik ściśliwości (C_c = -Δe/Δlogσ'_v)
- $C_s wskaźnik odprężenia (C_s = \Delta e/-\Delta \log \sigma'_v)$
- \mathbf{C}_{r} wskaźnik ściśliwości wtórnej (C_r = $\Delta e/-\Delta \log \sigma'_{v}$)
- e₀ początkowy wskaźnik porowatości próbki na początku badania
- ef wskaźnik porowatości próbki na końcu przyrostu obciążenia
- Eoed moduł edometryczny
- Ho początkowa wysokość próbki na początku badania
- H_f wysokość próbki na końcu przyrostu obciążenia
- \mathbf{k}_{v} współczynnik przepuszczalności (k_v = c_v*_{Yw}/m_v)
- m_v moduł ściśliwości objętościowej
- S_r stopień nasycenia
- ε_{v.f} odkształcenie pionowe na końcu przyrostu obciążenia
- σ'_v pionowe naprężenie efektywne
- σ'_p naprężenie prekonsolidacyjne

Rodzaj gru			Stan g makros	gruntu kopowo	ρ _s * (Mg/m³)		e ₀ (-)	S _r (%)							
Pył							ł	bl	2.	67	0.686	100			
Orientacja próbki Typ próbki Wycięcie z próby o niena						ruszonej strukturze Stosunek rami					Średnica pierścienia D (mm)				
poziom	а		A1		wyci	śniętej z p	oróbnika	a 1 60							
	Para	amet	ry począ	ątkowe							Parametry	końcowe	9		
Wilgotność naturalna w _n (%)	Wysokość próbki H ₀ (mm)		Gęstoś ρ (g/e	ść obj. [/] cm ³) Gęstość obj. szkieletu ρ _d (g/cm ³)		Wilgotność w ^W (%)		Wyso prób (m	/kość ki H _k Gęstość m) ρ (g/cn		obj. Gęsta n ³)		cość obj. szkieletu ρ _d (g/cm³)		
23.63	.63 19.74		1.9	96	1.	58	19.45		17.	.90	2.09		1.75		
Charakterystyki konsolidacyjne															
Fier	Δσ' _v		H _f	e _f **	ε _{v,f}	m _v	E _{oed}	C	v	C _{α(ε)}	$c_{\alpha(e)}$	C _c	Cs	C _r	k _v
Етар	(kPa)		(mm)	(-)	(%)	(MPa⁻¹)	(kPa)	(m ²	²/s)	(-)	(-)	(-)	(-)	(-)	(m/s)
	0		19.740	0.686	0	-	-			-	-			(-) (-)	-
	0-12,5	;	18.993	0.622	3.7842	3.027	330	3.12	E-07	2.37E-04	3.99E-04				5.29E-06
Obciążenie	12,5-2	5	18.839	0.609	4.5643	0.649	1602	1.75	E-07	2.05E-04	3.45E-04				3.16E-06
pierwotne	25-50		18.632	0.592	5.613	0.440	2384	3.34	E-07	2.89E-04	4.88E-04	1	-	-	9.24E-06
	50-100)	18.408	0.572	6.7477	0.240	4406	9.63	E-07	2.09E-04	3.52E-04				2.08E-05
	100-20	0	18.161	0.551	7.999	0.134	7992	6.03	E-07	1.69E-04	2.85E-04	-			2.63E-05
	200-10	0	18.185	0.553	7.8774	-	11413	-	-	-	-				-
Odciążenie	100-50)	18.220	0.556	7.7001	-	26029		-	-	-		0.009	-	-
	50-25		18.260	0.560	7.4975	-	75771	-	-	-	-				-
Obajatania	25-50		18.239	0.558	7.6039	0.046	26676	7.01	E-07	6.39E-05	1.08E-04				1.49E-04
wtórne	50-100)	18.202	0.555	7.7913	0.041	29909	7.08	E-07	6.40E-05	1.08E-04		-	0.012	1.71E-04
	100-20	0	18.136	0.549	8.1256	0.036	16588	5.20	E-07	8.55E-05	1.44E-04	0.075			1.41E-04
Ob. pierw.	200-40	0	17.898	0.529	9.3313	0.066	4287	5.97	E-07	1.05E-04	1.77E-04	0.010		-	8.92E-05

<u>Uwagi:</u>

Współczynnik konsolidacji c $_v$ został wyznaczony metodą Casagrande (logarytmu czasu).

Stan gruntu ρs Rodzaj gruntu S (%) e₀ (-) makroskopowo (Mg/m³) Pył 2.67 0.686 100 pl Sposób przygotowania próbki do badań Średnica pierścienia D Stosunek ramienia Orientacja próbki Typ próbki edom. (mm) Wycięcie z próby o nienaruszonej strukturze wyciśniętej z próbnika A1 1 60 pozioma Wyznaczenie naprężenia prekonsolidacyjnego Wykres podwójnie logarytmiczny zależności między objętością właściwą a naprężeniem efektywnym 0.490 0.485 0.480 0.475 0.470 0.465 Inv = In(1+e) (-) 0.460 0.455 0.450 0.445 0.440 0.435 0.430 0.425 0.420 1 10 σ'_p 100 1000 10000 Pionowe naprężenie efektywne σ', (kPa) Naprężenie prekonsolidacyjne σ'_p 100 kPa Uwagi: Naprężenie prekonsolidacyjne o'_p zostało wyznaczone metodą bi-logarytmiczną (Onitsuka, K., Hong, Z., Hara, Y. & Yoshitake, S. (1995). Interpretation of oedometer test data for natural clays. Soils Found. 35(3), 61–70. https://doi.org/10.3208/sandf.35.61)

Sprawozdanie może być powielane wyłącznie w całości i tylko za zgodą laboratorium.

Zał. 13

SPRAWOZDANIE Z WYKONANIA OZNACZENIA ŚCIŚLIWOŚCI **GRUNTU W EDOMETRZE**

wg PN-EN ISO 17892-5:2017-06

Temat*: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100 – 59+000

Numer otworu*: 55+380

Głębokość poboru: 4,3-4,8

Rodzaj gruntu: Pył

Rodzaj gruntu makroskopowo (ISO): Pył ilasty (clSi)

Badanie wykonał: dr inż. Bartłomiej Olek, mgr inż. Marek Wawok

Sprawozdanie autoryzował: dr inż. Bartłomiej Olek

* Dane przekazane przez Klienta.

Metoda badania: oznaczenie charakterystyk ściśliwości i konsolidacji na podstawie badania edometrycznego

Symbole użyte w opracowaniu:

- $\mathbf{c}_{\alpha(\epsilon)}$ współczynnik ściśliwości wtórnej od ϵ ($\mathbf{c}_{\alpha(\epsilon)}$ = - $\Delta\epsilon/\Delta \log t$)
- $c_{\alpha(e)}$ współczynnik ściśliwości wtórnej od e ($c_{\alpha(e)}$ = - $\Delta e/\Delta logt$)
- cv współczynnik konsolidacji
- **C**_c wskaźnik ściśliwości (C_c = -Δe/Δlogσ'_v)
- $C_s wskaźnik odprężenia (C_s = \Delta e/-\Delta \log \sigma'_v)$
- \mathbf{C}_{r} wskaźnik ściśliwości wtórnej (C_r = $\Delta e/-\Delta \log \sigma'_{v}$)
- e₀ początkowy wskaźnik porowatości próbki na początku badania
- ef wskaźnik porowatości próbki na końcu przyrostu obciążenia
- Eoed moduł edometryczny
- Ho początkowa wysokość próbki na początku badania
- H_f wysokość próbki na końcu przyrostu obciążenia
- \mathbf{k}_{v} współczynnik przepuszczalności (k_v = c_v*_{Yw}/m_v)
- m_v moduł ściśliwości objętościowej
- S_r stopień nasycenia
- ε_{v.f} odkształcenie pionowe na końcu przyrostu obciążenia
- σ'_v pionowe naprężenie efektywne
- σ'_p naprężenie prekonsolidacyjne

Rodzaj gru		Stan g makros	gruntu kopowo	ρ _s * (Mg/m³)		e ₀ (-)	S _r (%)									
Pył							F	bl	2.	67	0.590	100				
Orientacja próbki Typ próbki Sposób przygotowan Wycięcie z próby o nien						otowania oy o niena	ruszonej s	lo bad struktu	ań rze	Stosunek ramienia edom.			ednica pierścienia D (mm)			
poziom	а	A1			wyci	śniętej z p	oróbnika			1 60						
	Para	ametry po	czątk	kowe							Parametry	końcowe)			
Wilgotność naturalna w _n (%)	Wysoko próbki l (mm)	ść Gęs H ₀ ρ	tość (g/cn	ć obj. m ³)	Gęsto: szkie ρ _d (g	ść obj. eletu /cm ³)	Wilgotność w (%)		Wyso prób (m	kość Gęstość ki H _k ρ (g/cn m)		obj. Gęst n³)		stość obj. szkieletu ρ _d (g/cm³)		
22.36	2.36 19.82		2.05	5	1.	68	19.54		17.	96	2.21		1.85			
Charakterystyki konsolidacyjne																
Fier	Δσ' _v	H _f		e _f **	ε _{v,f}	m _v	E _{oed}	C	v	C _{α(ε)}	$c_{\alpha(e)}$	Cc	Cs	C _r	k _v	
Etap	(kPa)	(mm)	(-)	(%)	(MPa⁻¹)	(kPa)	(m ²	²/s)	(-)	(-)	(-)	(-)	(-)	(m/s)	
	0	19.82	0	0.590	0	-	-			-	-				-	
	0-12,5	19.33	0	0.551	2.4723	1.978	506	5.70	E-07	2.75E-04	4.37E-04	C _c C _s C _r k _v (-) (-) (-) (m/s) - 5.29E-06	5.29E-06			
Obciążenie	12,5-2	5 19.17	0	0.538	3.2795	0.662	1548	1.91	E-07	4.83E-04	7.68E-04				3.16E-06	
pierwotne	25-50	18.94	7	0.520	4.4046	0.465	2222	8.66E-08		3.65E-04	5.81E-04	1	-	-	9.24E-06	
	50-100	18.66	8	0.498	5.8123	0.295	3552	2.90	E-07	5.34E-04	8.49E-04				2.08E-05	
	100-20	0 18.31	8	0.470	7.5782	0.187	5663	1.30	E-07	5.00E-04	7.95E-04	-			2.63E-05	
	200-10	0 18.35	0	0.472	7.4168	-	10017	-	-	-	-				-	
Odciążenie	100-50	18.38	5	0.475	7.2402	-	26264	-		-	-		0.010	-	-	
	50-25	18.43	1	0.479	7.0081	-	57344			-	-				-	
Oheistenis	25-50	18.39	8	0.476	7.1746	0.072	22022	7.92	E-07	8.44E-05	1.34E-04				1.09E-04	
wtórne	50-100	18.35	3	0.472	7.4016	0.049	34772	3.99	E-07	2.59E-05	4.12E-05		_	0.012	8.01E-05	
	100-20	0 18.29	6	0.468	7.6892	0.031	11798	6.04	E-07	3.64E-05	5.79E-05	0.095			1.91E-04	
Ob. pierw.	200-40	0 17.96	0	0.441	9.3845	0.092	4262	6.57	E-07	5.10E-04	8.12E-04	0.000		-	7.02E-05	

<u>Uwagi:</u>

Współczynnik konsolidacji c $_v$ został wyznaczony metodą Casagrande (logarytmu czasu).

Sprawozdanie może być powielane wyłącznie w całości i tylko za zgodą laboratorium.

Laboratorium Badawcze Katedry Geotechniki i Wytrzymałości Materiałów

Zał. 14

SPRAWOZDANIE Z WYKONANIA OZNACZENIA ŚCIŚLIWOŚCI GRUNTU W EDOMETRZE

wg PN-EN ISO 17892-5:2017-06

Temat*: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100 – 59+000

Numer otworu*: 55+560

Głębokość poboru: 3,0-3,5

Rodzaj gruntu: Glina pylasta (próchniczna)

Rodzaj gruntu makroskopowo (ISO): Ił pylasty (orsiCl)

Badanie wykonał: dr inż. Bartłomiej Olek, mgr inż. Marek Wawok

Sprawozdanie autoryzował: dr inż. Bartłomiej Olek

* Dane przekazane przez Klienta.

Metoda badania: oznaczenie charakterystyk ściśliwości i konsolidacji na podstawie badania edometrycznego

Symbole użyte w opracowaniu:

- $c_{\alpha(\epsilon)}$ współczynnik ściśliwości wtórnej od ϵ ($c_{\alpha(\epsilon)}$ = - $\Delta \epsilon / \Delta \log t$)
- $c_{\alpha(e)}$ współczynnik ściśliwości wtórnej od e ($c_{\alpha(e)}$ = - $\Delta e/\Delta logt$)
- c_v współczynnik konsolidacji
- C_{c} wskaźnik ściśliwości (C_{c} = - $\Delta e/\Delta \log \sigma'_{v}$)
- \mathbf{C}_{s} wskaźnik odprężenia (C_s = $\Delta e/-\Delta \log \sigma'_{\nu}$)
- \mathbf{C}_{r} wskaźnik ściśliwości wtórnej (C_r = $\Delta e/-\Delta \log \sigma'_{v}$)
- ${f e}_0$ początkowy wskaźnik porowatości próbki na początku badania
- \mathbf{e}_{f} wskaźnik porowatości próbki na końcu przyrostu obciążenia
- Eoed moduł edometryczny
- H_0 początkowa wysokość próbki na początku badania
- $\mathbf{H}_{\mathbf{f}}$ wysokość próbki na końcu przyrostu obciążenia
- $\mathbf{k_v}$ współczynnik przepuszczalności (k_v = c_v*_{Yw}/m_v)
- $\mathbf{m_v}$ moduł ściśliwości objętościowej
- Sr stopień nasycenia
- $\epsilon_{v,\text{f}}$ odkształcenie pionowe na końcu przyrostu obciążenia
- σ'_v pionowe naprężenie efektywne
- σ'_p naprężenie prekonsolidacyjne

Rodzaj gru	intu				Stan g makros	gruntu ρ _s * (Mg, kopowo		Mg/m³)	e ₀ (-)	S _r (%)									
Glina pylasta + cz. organiczne											bl	2.	65	0.997	100				
Orientacja próbki Typ próbki Sposób przygotowania Wyciecie z próby o niena							ruszonej s	o bad struktu	ań rze	Stosunek ramienia edom.			ednica pierścienia D (mm)						
poziom	а	A1		, ,	wyci	śniętej z p	oróbnika			1				60					
	1																		
Parametry początkowe											Parametry końcowe								
Wilgotność naturalna w _n (%)	Wysokos próbki ł (mm)	ść Gę H ₀ f	ęstoś ρ (g/c	ść obj. /cm³) Gęstość obj. szkieletu ρ _d (g/cm³)		Wilgotność w (%)		Wyso prób (m	kość Gęstość ki H _k ρ (g/cr m)		obj. Gęst n ³)		tość obj. szkieletu ρ _d (g/cm³)						
35.85	19.9		1.8	1.80 1.33 33.98		17.	83	1.93		1.44									
	Charakterystyki konsolidacyjne																		
Eten	Δσ' _v	н	l _f	e _f **	٤ _{v,f}	m _v	E _{oed}	C	v	C _{α(ε)}	$c_{\alpha(e)}$	Cc	Cs	C _r	k _v				
⊏тар	(kPa)	(mı	m)	(-)	(%)	(MPa⁻¹)	(kPa)	(m ²	²/s)	(-)	(-)	(-)	(-)	(-)	(m/s)				
	0 19.	19.9	900	0.997	0	-	-		-	-	-				-				
	0-12,5	19.3	380	0.945	2.6131	2.090	478	7.12	E-07	7.82E-04	1.56E-03				5.29E-06				
Obciążenie	12,5-25	i 19.2	200	0.927	wyciśniętej z próbnika Wyciśniętej z próbnika Parametry końcowe Gęstość obj. szkieletu $\rho_d (g/cm^3)$ Gęstość obj. p (g/cm ³) Gęstość obj. $\rho(g/cm3)$ Gęstość obj. $\rho(g/cm3)$ Gęstość obj. $\rho_d (g/d 1.33 33.98 17.83 1.93 1.4 Charakterystyki konsolidacyjne Evef mv Eoed Cv Ca(e) Cc C 2.6131 2.090 478 7.12E-07 7.82E-04 1.56E-03 3.5176 0.743 1382 6.54E-07 2.81E-04 5.61E-04 5.7387 0.265 3948 8.66E-07 4.91E-04 0.013 7.5377 - - 7.5377 - 0.013 7.3367 - - $		3.16E-06												
pierwotne	25-50	19.0	010	0.908	4.4724	0.396	2618	7.85	E-07	2.43E-04	4.86E-04		-	-	9.24E-06				
	50-100	18.7	758	0.883	5.7387	0.265	3948	8.66	E-07	4.91E-04	9.81E-04				2.08E-05				
	100-200) 18.3	390	0.846	7.5879	0.196	5408	5.35	E-07	4.15E-04	8.29E-04	-			2.63E-05				
	200-100) 18.4	400	0.847	7.5377	-	7117		-	-	-				-				
Odciążenie	100-50	18.4	440	0.851	7.3367	-	23050		-	-	-		0.013	-	-				
	50-25	18.5	505	0.857	7.0101	-	184000		-	-	-				-				
Obciażonio	25-50	18.4	475	0.854	7.1608	0.065	19510	1.04	E-06	8.41E-05	1.68E-04				1.57E-04				
wtórne	50-100	18.4	424	0.849	7.4171	0.055	21630	3.91	E-07	2.58E-05	5.16E-05		-	0.019	6.94E-05				
	100-200) 18.3	332	0.840	7.8794	0.050	7960	4.53	E-07	5.18E-05	1.03E-04	0.186			8.90E-05				
- · ·		• • • • •											~						

6.27E-07

7.64E-04 1.53E-03

0.136

3849

10.392

<u>Uwagi:</u>

Ob. pierw.

200-400

17.832

0.790

Współczynnik konsolidacji c $_v$ został wyznaczony metodą Casagrande (logarytmu czasu).

4.51E-05

-

Sprawozdanie może być powielane wyłącznie w całości i tylko za zgodą laboratorium.

Zał. 15

SPRAWOZDANIE Z WYKONANIA OZNACZENIA ŚCIŚLIWOŚCI GRUNTU W EDOMETRZE

wg PN-EN ISO 17892-5:2017-06

Temat*: Linia kolejowa E65 na odc. Zabrzeg – Zebrzydowice (Granica Państwa), km 53+100 – 59+000

Numer otworu*: 55+560

Głębokość poboru: 4,9-5,4

Rodzaj gruntu: Namuł gliniasty (Glina pylasta)

Rodzaj gruntu makroskopowo (ISO): Ił pylasty (orsiCl)

Badanie wykonał: dr inż. Bartłomiej Olek, mgr inż. Marek Wawok

Sprawozdanie autoryzował: dr inż. Bartłomiej Olek

* Dane przekazane przez Klienta.

Metoda badania: oznaczenie charakterystyk ściśliwości i konsolidacji na podstawie badania edometrycznego

Symbole użyte w opracowaniu:

- $c_{\alpha(\epsilon)}$ współczynnik ściśliwości wtórnej od ϵ ($c_{\alpha(\epsilon)}$ = - $\Delta \epsilon / \Delta \log t$)
- $c_{\alpha(e)}$ współczynnik ściśliwości wtórnej od e ($c_{\alpha(e)}$ = - $\Delta e/\Delta logt$)
- c_v współczynnik konsolidacji
- C_{c} wskaźnik ściśliwości (C_{c} = - $\Delta e/\Delta \log \sigma'_{v}$)
- $C_s wskaźnik odprężenia (C_s = \Delta e/-\Delta \log \sigma'_v)$
- \mathbf{C}_{r} wskaźnik ściśliwości wtórnej (C_r = $\Delta e/-\Delta \log \sigma'_{v}$)
- eo początkowy wskaźnik porowatości próbki na początku badania
- ef wskaźnik porowatości próbki na końcu przyrostu obciążenia
- Eoed moduł edometryczny
- H_0 początkowa wysokość próbki na początku badania
- $\mathbf{H}_{\rm f}$ wysokość próbki na końcu przyrostu obciążenia
- $\mathbf{k_v}$ współczynnik przepuszczalności (k_v = c_v*_{Yw}/m_v)
- $\mathbf{m_v}$ moduł ściśliwości objętościowej
- Sr stopień nasycenia
- $\epsilon_{v,\text{f}}$ odkształcenie pionowe na końcu przyrostu obciążenia
- σ'_v pionowe naprężenie efektywne
- σ'_p naprężenie prekonsolidacyjne

0.140

Rodzaj gru	intu			Stan g makros	gruntu kopowo ^ρ s *		Mg/m³)	e ₀ (-)	S _r (%)							
Namuł gliniasty (Glina pylasta)										bl	2.	.63	0.844	100		
Orientacja próbki Typ próbki Sposób przygotowania próbki do bac Wyciecie z próby o nienaruszonej struktu								ań rze	Stosunek ede	Stosunek ramienia edom. Średnica pierścienia D (mm)						
poziom	а	A1	wyciśniętej			próbnika			1			60				
Parametry początkowe Parametry końcowe																
Wilgotność naturalna w _n (%)	Wysokos próbki H (mm)	ść I₀ Gęsto ρ (g	ść obj. /cm³)	Gęstość obj. szkieletu ρ _d (g/cm³)		Wilgotność w (%)		Wyso prób (m	kość ki H _k m)	Gęstość obj. ρ (g/cm³)		Gęstość obj. szkielet ρ _d (g/cm³)				
31.29	19.93	1	.87	1.	43	27.63 17		17.	.82	2.02		1.58				
	Charakterystyki konsolidacyjne															
E tau	Δσ' _v	H _f	e _f **	ε _{v,f}	m _v	E _{oed}	C	v	C _{α(ε)}	$c_{\alpha(e)}$	Cc	Cs	C _r	k _v		
Etap	(kPa)	(mm)	(-)	(%)	(MPa ⁻¹)	(kPa)	(m²/s)		(-)	(-)	(-)	(-)	(-)	(m/s)		
	0	19.930	0.844	0	-	-	-	-	-	-				-		
	0-12,5	19.310	0.787	3.1109	2.489	402	1.16	E-06	2.34E-04	4.32E-04				5.29E-06		
Etap Obciążenie	12,5-25	19.151	0.772	3.9087	0.659	1567	6.46	E-07	2.82E-04	5.20E-04	1		_	3.16E-06		
pierwotne	25-50	18.928	0.752	5.0276	0.466	2234	3.24	E-07	2.03E-04	3.75E-04				9.24E-06		
	50-100	18.645	0.725	6.4476	0.299	3521	4.14	E-07	3.29E-04	6.07E-04	1			2.08E-05		
	100-200) 18.272	0.691	8.3191	0.200	5343	3.91E-07		3.76E-04	6.93E-04	-			2.63E-05		
	200-100) 18.310	0.694	8.1284	-	10017		-	-	-				-		
Odciążenie	100-50	18.371	0.700	7.8224	-	26264	-	-	-	-		0.018	-	-		
	50-25	18.446	0.707	7.4461	-	57344		-	-	-				-		
Obciażenie	25-50	18.409	0.703	7.6317	0.080	15570	7.90	E-07	8.44E-05	1.56E-04				9.66E-05		
wtórne	50-100	18.345	0.698	7.9528	0.070	16471	8.09	E-07	5.18E-05	9.56E-05		-	0.023	1.14E-04		
witchine	100-200	18.224	0.686	8.56	0.066	9746	6.04	E-07	5.20E-05	9.59E-05	0.140			8.98E-05		

<u>Uwagi:</u>

Ob. pierw.

200-400

17.815

0.649

10.612

0.112

3769

1.02E-06

7.69E-04

1.42E-03

Współczynnik konsolidacji c $_v$ został wyznaczony metodą Casagrande (logarytmu czasu).

8.92E-05

Sprawozdanie może być powielane wyłącznie w całości i tylko za zgodą laboratorium.